Cargando…
Deep learned tissue “fingerprints” classify breast cancers by ER/PR/Her2 status from H&E images
Because histologic types are subjective and difficult to reproduce between pathologists, tissue morphology often takes a back seat to molecular testing for the selection of breast cancer treatments. This work explores whether a deep-learning algorithm can learn objective histologic H&E features...
Autores principales: | Rawat, Rishi R., Ortega, Itzel, Roy, Preeyam, Sha, Fei, Shibata, Darryl, Ruderman, Daniel, Agus, David B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7190637/ https://www.ncbi.nlm.nih.gov/pubmed/32350370 http://dx.doi.org/10.1038/s41598-020-64156-4 |
Ejemplares similares
-
Development of a robust RNA-based classifier to accurately determine ER, PR, and HER2 status in breast cancer clinical samples
por: Wilson, Timothy R., et al.
Publicado: (2014) -
Correlating nuclear morphometric patterns with estrogen receptor status in breast cancer pathologic specimens
por: Rawat, Rishi R., et al.
Publicado: (2018) -
Discordances in ER, PR, and HER2 between primary breast cancer and brain metastasis
por: Jung, Jaehag, et al.
Publicado: (2017) -
ODP539 AIPB is a Biomarker for ER+/PR+/Her2- Breast Cancers
por: Cubbedge, Chandler, et al.
Publicado: (2022) -
Association between Acquired Uniparental Disomy and Homozygous Mutations and HER2/ER/PR Status in Breast Cancer
por: Tuna, Musaffe, et al.
Publicado: (2010)