Cargando…
Benchmarking RNA-seq differential expression analysis methods using spike-in and simulation data
Benchmarking RNA-seq differential expression analysis methods using spike-in and simulated RNA-seq data has often yielded inconsistent results. The spike-in data, which were generated from the same bulk RNA sample, only represent technical variability, making the test results less reliable. We compa...
Autores principales: | Baik, Bukyung, Yoon, Sora, Nam, Dougu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7192453/ https://www.ncbi.nlm.nih.gov/pubmed/32353015 http://dx.doi.org/10.1371/journal.pone.0232271 |
Ejemplares similares
-
Benchmarking integration of single-cell differential expression
por: Nguyen, Hai C. T., et al.
Publicado: (2023) -
Powerful p-value combination methods to detect incomplete association
por: Yoon, Sora, et al.
Publicado: (2021) -
Gene dispersion is the key determinant of the read count bias in differential expression analysis of RNA-seq data
por: Yoon, Sora, et al.
Publicado: (2017) -
Improving Gene-Set Enrichment Analysis of RNA-Seq Data with Small Replicates
por: Yoon, Sora, et al.
Publicado: (2016) -
Efficient pathway enrichment and network analysis of GWAS summary data using GSA-SNP2
por: Yoon, Sora, et al.
Publicado: (2018)