Cargando…
S3norm: simultaneous normalization of sequencing depth and signal-to-noise ratio in epigenomic data
Quantitative comparison of epigenomic data across multiple cell types or experimental conditions is a promising way to understand the biological functions of epigenetic modifications. However, differences in sequencing depth and signal-to-noise ratios in the data from different experiments can hinde...
Autores principales: | Xiang, Guanjue, Keller, Cheryl A, Giardine, Belinda, An, Lin, Li, Qunhua, Zhang, Yu, Hardison, Ross C |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7192629/ https://www.ncbi.nlm.nih.gov/pubmed/32086521 http://dx.doi.org/10.1093/nar/gkaa105 |
Ejemplares similares
-
S3V2-IDEAS: a package for normalizing, denoising and integrating epigenomic datasets across different cell types
por: Xiang, Guanjue, et al.
Publicado: (2021) -
CLIMB: High-dimensional association detection in large scale genomic data
por: Koch, Hillary, et al.
Publicado: (2022) -
OnTAD: hierarchical domain structure reveals the divergence of activity among TADs and boundaries
por: An, Lin, et al.
Publicado: (2019) -
Systematic integration of GATA transcription factors and epigenomes via IDEAS paints the regulatory landscape of hematopoietic cells
por: Hardison, Ross C., et al.
Publicado: (2019) -
Maximizing signal-to-noise ratio in the random mutation capture assay
por: Poovathingal, Suresh Kumar, et al.
Publicado: (2012)