Cargando…
MODER2: first-order Markov modeling and discovery of monomeric and dimeric binding motifs
MOTIVATION: Position-specific probability matrices (PPMs, also called position-specific weight matrices) have been the dominating model for transcription factor (TF)-binding motifs in DNA. There is, however, increasing recent evidence of better performance of higher order models such as Markov model...
Autores principales: | Toivonen, Jarkko, Das, Pratyush K, Taipale, Jussi, Ukkonen, Esko |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7203737/ https://www.ncbi.nlm.nih.gov/pubmed/31999322 http://dx.doi.org/10.1093/bioinformatics/btaa045 |
Ejemplares similares
-
Modular discovery of monomeric and dimeric transcription factor binding motifs for large data sets
por: Toivonen, Jarkko, et al.
Publicado: (2018) -
Bayesian Markov models improve the prediction of binding motifs beyond first order
por: Ge, Wanwan, et al.
Publicado: (2021) -
Binding of inhibitors to the monomeric and dimeric SARS-CoV-2 Mpro
por: Tam, Nguyen Minh, et al.
Publicado: (2021) -
Efficient algorithms for the discovery of gapped factors
por: Apostolico, Alberto, et al.
Publicado: (2011) -
Distinguishable In Vitro Binding Mode of Monomeric TRBP and Dimeric PACT with siRNA
por: Takahashi, Tomoko, et al.
Publicado: (2013)