Cargando…
Identifying novel associations in GWAS by hierarchical Bayesian latent variable detection of differentially misclassified phenotypes
BACKGROUND: Heterogeneity in the definition and measurement of complex diseases in Genome-Wide Association Studies (GWAS) may lead to misdiagnoses and misclassification errors that can significantly impact discovery of disease loci. While well appreciated, almost all analyses of GWAS data consider r...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7204256/ https://www.ncbi.nlm.nih.gov/pubmed/32381021 http://dx.doi.org/10.1186/s12859-020-3387-z |