Cargando…
Identifying novel associations in GWAS by hierarchical Bayesian latent variable detection of differentially misclassified phenotypes
BACKGROUND: Heterogeneity in the definition and measurement of complex diseases in Genome-Wide Association Studies (GWAS) may lead to misdiagnoses and misclassification errors that can significantly impact discovery of disease loci. While well appreciated, almost all analyses of GWAS data consider r...
Autores principales: | Shafquat, Afrah, Crystal, Ronald G., Mezey, Jason G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7204256/ https://www.ncbi.nlm.nih.gov/pubmed/32381021 http://dx.doi.org/10.1186/s12859-020-3387-z |
Ejemplares similares
-
Role of KRAS in regulating normal human airway basal cell differentiation
por: Ogawa, Fumihiro, et al.
Publicado: (2019) -
Improving predictive models for Alzheimer’s disease using GWAS data by incorporating misclassified samples modeling
por: Romero-Rosales, Brissa-Lizbeth, et al.
Publicado: (2020) -
Trend of hepatocellular carcinoma incidence after Bayesian correction for misclassified data in Iranian provinces
por: Hajizadeh, Nastaran, et al.
Publicado: (2017) -
Bayesian adjustment for trend of colorectal cancer incidence in misclassified registering across Iranian provinces
por: Shojaee, Sajad, et al.
Publicado: (2018) -
Handling misclassified stratification variables in the analysis of randomised trials with continuous outcomes
por: Yelland, Lisa N., et al.
Publicado: (2023)