Cargando…
PATH - Prediction of Amyloidogenicity by Threading and Machine Learning
Amyloids are protein aggregates observed in several diseases, for example in Alzheimer’s and Parkinson’s diseases. An aggregate has a very regular beta structure with a tightly packed core, which spontaneously assumes a steric zipper form. Experimental methods enable studying such peptides, however...
Autores principales: | Wojciechowski, Jakub W., Kotulska, Małgorzata |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7206081/ https://www.ncbi.nlm.nih.gov/pubmed/32382058 http://dx.doi.org/10.1038/s41598-020-64270-3 |
Ejemplares similares
-
Machine learning methods can replace 3D profile method in classification of amyloidogenic hexapeptides
por: Stanislawski, Jerzy, et al.
Publicado: (2013) -
Bioinformatics methods for identification of amyloidogenic peptides show robustness to misannotated training data
por: Szulc, Natalia, et al.
Publicado: (2021) -
Amyloidogenic motifs revealed by n-gram analysis
por: Burdukiewicz, Michał, et al.
Publicado: (2017) -
FISH Amyloid – a new method for finding amyloidogenic segments in proteins based on site specific co-occurence of aminoacids
por: Gasior, Pawel, et al.
Publicado: (2014) -
AB-Amy: machine learning aided amyloidogenic risk prediction of therapeutic antibody light chains
por: Zhou, Yuwei, et al.
Publicado: (2023)