Cargando…

OR17-01 Leptin Decreases De Novo Lipogenesis in Lipodystrophic Patients

De novo lipogenesis (DNL) plays a role in the development of hepatic steatosis and non-alcoholic fatty liver disease (NAFLD). In rodent models of both health and lipodystrophy (LD), leptin decreases DNL. In human patients with LD, reduced adipose tissue results in adipokine deficiencies, including l...

Descripción completa

Detalles Bibliográficos
Autores principales: Baykal, Annah Petek, Parks, Elizabeth J, Shamburek, Robert, Chung, Stephanie, Syed-Abdul, Majid M, Muniyappa, Ranganath, Cochran, Elaine, Startzell, Megan, Gharib, Ahmed M, Ouwerkerk, Ronald, Walter, Peter J, Brown, Rebecca J
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7207974/
http://dx.doi.org/10.1210/jendso/bvaa046.035
Descripción
Sumario:De novo lipogenesis (DNL) plays a role in the development of hepatic steatosis and non-alcoholic fatty liver disease (NAFLD). In rodent models of both health and lipodystrophy (LD), leptin decreases DNL. In human patients with LD, reduced adipose tissue results in adipokine deficiencies, including lower plasma leptin, which contributes to insulin resistance, dyslipidemia and ectopic accumulation of triglycerides (TG). The mechanisms by which leptin regulates serum and hepatic-TG are not well elucidated. Studying patients with LD before and after leptin therapy provides an important clinical model for understanding leptin’s effect on DNL. We hypothesized that leptin treatment in lipodystrophic patients would decrease DNL by decreasing insulin resistance and glycemia, resulting in reduced circulating and hepatic-TG. Leptin-naïve patients with LD (n=11) were treated with recombinant leptin (metreleptin) for 6 months. All measurements were performed after an 8–12 hr fast. The % of TG in TG-rich lipoproteins (TRLP-TG) derived from DNL (% DNL) was measured using body water labeling (oral D(2)O) of TG and mass spectrometry analysis. Absolute DNL was calculated as the product of TRLP-TG and % DNL. HbA1c and serum-TG were measured biochemically, hepatic-TG by MRI, and total body and hepatic insulin sensitivity measured during a hyperinsulinemic-euglycemic clamp. DNL decreased after metreleptin: % DNL from 22.8±6.8 to 9.1±5.1% (p=0.0008) and absolute DNL from 54.2±32.1 to 8.6±6.5 mg/dl (p=0.003). TRLP-TG decreased from (median [interquartile range]) 160 [107, 280] to 98 [66, 147] mg/dl (p=0.01). Total body and hepatic insulin sensitivity increased from 3.7 [3.0, 7.3] to 8.4 [5.1,10.6] mg/kg(FFM)/min (p=0.03) and from 61.0 [48.5, 69.3] to 84.7 [75.2, 107.6] % (p =0.01), respectively. HbA1c decreased from 8.6±1.8 to 7.1±1.4% (p=0.04), hepatic-TG decreased from 17.6±11.9 to 10.3±9.1% (p=0.02), and serum-TG from 386 [216, 686] to 223 [118, 497] mg/dl (p=0.06). DNL correlated negatively with insulin sensitivity both before (r=-0.73, p=0.03) and after (r=-0.85, p=0.004) metreleptin. DNL correlated positively with hepatic-TG before (r=0.70 p=0.03) and tended to correlate after metreleptin (r=0.65, p=0.06). The change in DNL correlated with change in serum-TG (r=0.77, p=0.04) but not the change in hepatic-TG (p=0.80). We show here for the first time that 6 months of metreleptin treatment in humans with LD decreased DNL by 84% and was associated with reductions in glycemia and improved peripheral and hepatic insulin sensitivity. These data indicate a strong link between metreleptin’s effects to increase clearance of blood glucose by peripheral tissues and reduce hepatic carbohydrate flux, resulting in DNL reductions. This led to lowered hepatic steatosis and dyslipidemia and suggests treatments that target multi-organ insulin resistance may lead to decreased NAFLD and cardiovascular risk.