Cargando…

Prominent radiative contributions from multiply-excited states in laser-produced tin plasma for nanolithography

Extreme ultraviolet (EUV) lithography is currently entering high-volume manufacturing to enable the continued miniaturization of semiconductor devices. The required EUV light, at 13.5 nm wavelength, is produced in a hot and dense laser-driven tin plasma. The atomic origins of this light are demonstr...

Descripción completa

Detalles Bibliográficos
Autores principales: Torretti, F., Sheil, J., Schupp, R., Basko, M. M., Bayraktar, M., Meijer, R. A., Witte, S., Ubachs, W., Hoekstra, R., Versolato, O. O., Neukirch, A. J., Colgan, J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7214432/
https://www.ncbi.nlm.nih.gov/pubmed/32393789
http://dx.doi.org/10.1038/s41467-020-15678-y
_version_ 1783531969578008576
author Torretti, F.
Sheil, J.
Schupp, R.
Basko, M. M.
Bayraktar, M.
Meijer, R. A.
Witte, S.
Ubachs, W.
Hoekstra, R.
Versolato, O. O.
Neukirch, A. J.
Colgan, J.
author_facet Torretti, F.
Sheil, J.
Schupp, R.
Basko, M. M.
Bayraktar, M.
Meijer, R. A.
Witte, S.
Ubachs, W.
Hoekstra, R.
Versolato, O. O.
Neukirch, A. J.
Colgan, J.
author_sort Torretti, F.
collection PubMed
description Extreme ultraviolet (EUV) lithography is currently entering high-volume manufacturing to enable the continued miniaturization of semiconductor devices. The required EUV light, at 13.5 nm wavelength, is produced in a hot and dense laser-driven tin plasma. The atomic origins of this light are demonstrably poorly understood. Here we calculate detailed tin opacity spectra using the Los Alamos atomic physics suite ATOMIC and validate these calculations with experimental comparisons. Our key finding is that EUV light largely originates from transitions between multiply-excited states, and not from the singly-excited states decaying to the ground state as is the current paradigm. Moreover, we find that transitions between these multiply-excited states also contribute in the same narrow window around 13.5 nm as those originating from singly-excited states, and this striking property holds over a wide range of charge states. We thus reveal the doubly magic behavior of tin and the origins of the EUV light.
format Online
Article
Text
id pubmed-7214432
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-72144322020-05-14 Prominent radiative contributions from multiply-excited states in laser-produced tin plasma for nanolithography Torretti, F. Sheil, J. Schupp, R. Basko, M. M. Bayraktar, M. Meijer, R. A. Witte, S. Ubachs, W. Hoekstra, R. Versolato, O. O. Neukirch, A. J. Colgan, J. Nat Commun Article Extreme ultraviolet (EUV) lithography is currently entering high-volume manufacturing to enable the continued miniaturization of semiconductor devices. The required EUV light, at 13.5 nm wavelength, is produced in a hot and dense laser-driven tin plasma. The atomic origins of this light are demonstrably poorly understood. Here we calculate detailed tin opacity spectra using the Los Alamos atomic physics suite ATOMIC and validate these calculations with experimental comparisons. Our key finding is that EUV light largely originates from transitions between multiply-excited states, and not from the singly-excited states decaying to the ground state as is the current paradigm. Moreover, we find that transitions between these multiply-excited states also contribute in the same narrow window around 13.5 nm as those originating from singly-excited states, and this striking property holds over a wide range of charge states. We thus reveal the doubly magic behavior of tin and the origins of the EUV light. Nature Publishing Group UK 2020-05-11 /pmc/articles/PMC7214432/ /pubmed/32393789 http://dx.doi.org/10.1038/s41467-020-15678-y Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Torretti, F.
Sheil, J.
Schupp, R.
Basko, M. M.
Bayraktar, M.
Meijer, R. A.
Witte, S.
Ubachs, W.
Hoekstra, R.
Versolato, O. O.
Neukirch, A. J.
Colgan, J.
Prominent radiative contributions from multiply-excited states in laser-produced tin plasma for nanolithography
title Prominent radiative contributions from multiply-excited states in laser-produced tin plasma for nanolithography
title_full Prominent radiative contributions from multiply-excited states in laser-produced tin plasma for nanolithography
title_fullStr Prominent radiative contributions from multiply-excited states in laser-produced tin plasma for nanolithography
title_full_unstemmed Prominent radiative contributions from multiply-excited states in laser-produced tin plasma for nanolithography
title_short Prominent radiative contributions from multiply-excited states in laser-produced tin plasma for nanolithography
title_sort prominent radiative contributions from multiply-excited states in laser-produced tin plasma for nanolithography
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7214432/
https://www.ncbi.nlm.nih.gov/pubmed/32393789
http://dx.doi.org/10.1038/s41467-020-15678-y
work_keys_str_mv AT torrettif prominentradiativecontributionsfrommultiplyexcitedstatesinlaserproducedtinplasmafornanolithography
AT sheilj prominentradiativecontributionsfrommultiplyexcitedstatesinlaserproducedtinplasmafornanolithography
AT schuppr prominentradiativecontributionsfrommultiplyexcitedstatesinlaserproducedtinplasmafornanolithography
AT baskomm prominentradiativecontributionsfrommultiplyexcitedstatesinlaserproducedtinplasmafornanolithography
AT bayraktarm prominentradiativecontributionsfrommultiplyexcitedstatesinlaserproducedtinplasmafornanolithography
AT meijerra prominentradiativecontributionsfrommultiplyexcitedstatesinlaserproducedtinplasmafornanolithography
AT wittes prominentradiativecontributionsfrommultiplyexcitedstatesinlaserproducedtinplasmafornanolithography
AT ubachsw prominentradiativecontributionsfrommultiplyexcitedstatesinlaserproducedtinplasmafornanolithography
AT hoekstrar prominentradiativecontributionsfrommultiplyexcitedstatesinlaserproducedtinplasmafornanolithography
AT versolatooo prominentradiativecontributionsfrommultiplyexcitedstatesinlaserproducedtinplasmafornanolithography
AT neukirchaj prominentradiativecontributionsfrommultiplyexcitedstatesinlaserproducedtinplasmafornanolithography
AT colganj prominentradiativecontributionsfrommultiplyexcitedstatesinlaserproducedtinplasmafornanolithography