Cargando…
Correction Algorithm for the Navigation System of an Autonomous Unmanned Underwater Vehicle
More accurate navigation systems are always required for autonomous unmanned underwater vehicles (AUUV)s under various circumstances. In this paper, a measuring complex of a heavy unmanned underwater vehicle (UUV) was investigated. The measuring complex consists of an inertial navigation platform sy...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7219321/ https://www.ncbi.nlm.nih.gov/pubmed/32326276 http://dx.doi.org/10.3390/s20082365 |
_version_ | 1783532971616108544 |
---|---|
author | Chen, Danhe Neusypin, K. A. Selezneva, M. S. |
author_facet | Chen, Danhe Neusypin, K. A. Selezneva, M. S. |
author_sort | Chen, Danhe |
collection | PubMed |
description | More accurate navigation systems are always required for autonomous unmanned underwater vehicles (AUUV)s under various circumstances. In this paper, a measuring complex of a heavy unmanned underwater vehicle (UUV) was investigated. The measuring complex consists of an inertial navigation platform system, a Doppler lag (DL) and an estimation algorithm. During a relatively long-term voyage of an UUV without surfacing and correction from buoys and stationary stations, errors of the measuring complex will increase over time. The increase in errors is caused by an increase in the deviation angles of the gyro platform relative to the accompanying trihedron of the selected coordinate system. To reduce these angles, correction is used in the structure of the inertial navigation system (INS) using a linear regulator. To increase accuracy, it is proposed to take into account the nonlinear features of INS errors; an adaptive nonlinear Kalman filter and a nonlinear controller were used in the correction scheme. Considering that, a modified nonlinear Kalman filter and a regulator in the measuring complex are proposed to improve the accuracy of the measurement information, and modification of the nonlinear Kalman filter was performed through a genetic algorithm, in which the regulator was developed by the State Dependent Coefficient (SDC) method of the formulated model. Modeling combined with a semi-natural experiment with a real inertial navigation system for the UUV demonstrated the efficiency and effectiveness of the proposed algorithms. |
format | Online Article Text |
id | pubmed-7219321 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-72193212020-05-22 Correction Algorithm for the Navigation System of an Autonomous Unmanned Underwater Vehicle Chen, Danhe Neusypin, K. A. Selezneva, M. S. Sensors (Basel) Article More accurate navigation systems are always required for autonomous unmanned underwater vehicles (AUUV)s under various circumstances. In this paper, a measuring complex of a heavy unmanned underwater vehicle (UUV) was investigated. The measuring complex consists of an inertial navigation platform system, a Doppler lag (DL) and an estimation algorithm. During a relatively long-term voyage of an UUV without surfacing and correction from buoys and stationary stations, errors of the measuring complex will increase over time. The increase in errors is caused by an increase in the deviation angles of the gyro platform relative to the accompanying trihedron of the selected coordinate system. To reduce these angles, correction is used in the structure of the inertial navigation system (INS) using a linear regulator. To increase accuracy, it is proposed to take into account the nonlinear features of INS errors; an adaptive nonlinear Kalman filter and a nonlinear controller were used in the correction scheme. Considering that, a modified nonlinear Kalman filter and a regulator in the measuring complex are proposed to improve the accuracy of the measurement information, and modification of the nonlinear Kalman filter was performed through a genetic algorithm, in which the regulator was developed by the State Dependent Coefficient (SDC) method of the formulated model. Modeling combined with a semi-natural experiment with a real inertial navigation system for the UUV demonstrated the efficiency and effectiveness of the proposed algorithms. MDPI 2020-04-21 /pmc/articles/PMC7219321/ /pubmed/32326276 http://dx.doi.org/10.3390/s20082365 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Chen, Danhe Neusypin, K. A. Selezneva, M. S. Correction Algorithm for the Navigation System of an Autonomous Unmanned Underwater Vehicle |
title | Correction Algorithm for the Navigation System of an Autonomous Unmanned Underwater Vehicle |
title_full | Correction Algorithm for the Navigation System of an Autonomous Unmanned Underwater Vehicle |
title_fullStr | Correction Algorithm for the Navigation System of an Autonomous Unmanned Underwater Vehicle |
title_full_unstemmed | Correction Algorithm for the Navigation System of an Autonomous Unmanned Underwater Vehicle |
title_short | Correction Algorithm for the Navigation System of an Autonomous Unmanned Underwater Vehicle |
title_sort | correction algorithm for the navigation system of an autonomous unmanned underwater vehicle |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7219321/ https://www.ncbi.nlm.nih.gov/pubmed/32326276 http://dx.doi.org/10.3390/s20082365 |
work_keys_str_mv | AT chendanhe correctionalgorithmforthenavigationsystemofanautonomousunmannedunderwatervehicle AT neusypinka correctionalgorithmforthenavigationsystemofanautonomousunmannedunderwatervehicle AT seleznevams correctionalgorithmforthenavigationsystemofanautonomousunmannedunderwatervehicle |