Cargando…
Development of Pd/TiO(2) Porous Layers by Pulsed Laser Deposition for Surface Acoustic Wave H(2) Gas Sensor
The influence of sensitive porous films obtained by pulsed laser deposition (PLD) on the response of surface acoustic wave (SAW) sensors on hydrogen at room temperature (RT) was studied. Monolayer films of TiO(2) and bilayer films of Pd/TiO(2) were deposited on the quartz substrates of SAW sensors....
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7221725/ https://www.ncbi.nlm.nih.gov/pubmed/32326639 http://dx.doi.org/10.3390/nano10040760 |
_version_ | 1783533427326189568 |
---|---|
author | Constantinoiu, Izabela Viespe, Cristian |
author_facet | Constantinoiu, Izabela Viespe, Cristian |
author_sort | Constantinoiu, Izabela |
collection | PubMed |
description | The influence of sensitive porous films obtained by pulsed laser deposition (PLD) on the response of surface acoustic wave (SAW) sensors on hydrogen at room temperature (RT) was studied. Monolayer films of TiO(2) and bilayer films of Pd/TiO(2) were deposited on the quartz substrates of SAW sensors. By varying the oxygen and argon pressure in the PLD deposition chamber, different morphologies of the sensitive films were obtained, which were analyzed based on scanning electron microscopy (SEM) images. SAW sensors were realized with different porosity degrees, and these were tested at different hydrogen concentrations. It has been confirmed that the high porosity of the film and the bilayer structure leads to a higher frequency shift and allow the possibility to make tests at lower concentrations. Thus, the best sensor, Pd-1500/TiO(2)-600, with the deposition pressure of 600 mTorr for TiO(2) and 1500 mTorr for Pd, had a frequency shift of 1.8 kHz at 2% hydrogen concentration, a sensitivity of 0.10 Hz/ppm and a limit of detection (LOD) of 1210 ppm. SAW sensors based on such porous films allow the detection of hydrogen but also of other gases at RT, and by PLD method such sensitive porous and nanostructured films can be easily developed. |
format | Online Article Text |
id | pubmed-7221725 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-72217252020-05-21 Development of Pd/TiO(2) Porous Layers by Pulsed Laser Deposition for Surface Acoustic Wave H(2) Gas Sensor Constantinoiu, Izabela Viespe, Cristian Nanomaterials (Basel) Article The influence of sensitive porous films obtained by pulsed laser deposition (PLD) on the response of surface acoustic wave (SAW) sensors on hydrogen at room temperature (RT) was studied. Monolayer films of TiO(2) and bilayer films of Pd/TiO(2) were deposited on the quartz substrates of SAW sensors. By varying the oxygen and argon pressure in the PLD deposition chamber, different morphologies of the sensitive films were obtained, which were analyzed based on scanning electron microscopy (SEM) images. SAW sensors were realized with different porosity degrees, and these were tested at different hydrogen concentrations. It has been confirmed that the high porosity of the film and the bilayer structure leads to a higher frequency shift and allow the possibility to make tests at lower concentrations. Thus, the best sensor, Pd-1500/TiO(2)-600, with the deposition pressure of 600 mTorr for TiO(2) and 1500 mTorr for Pd, had a frequency shift of 1.8 kHz at 2% hydrogen concentration, a sensitivity of 0.10 Hz/ppm and a limit of detection (LOD) of 1210 ppm. SAW sensors based on such porous films allow the detection of hydrogen but also of other gases at RT, and by PLD method such sensitive porous and nanostructured films can be easily developed. MDPI 2020-04-15 /pmc/articles/PMC7221725/ /pubmed/32326639 http://dx.doi.org/10.3390/nano10040760 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Constantinoiu, Izabela Viespe, Cristian Development of Pd/TiO(2) Porous Layers by Pulsed Laser Deposition for Surface Acoustic Wave H(2) Gas Sensor |
title | Development of Pd/TiO(2) Porous Layers by Pulsed Laser Deposition for Surface Acoustic Wave H(2) Gas Sensor |
title_full | Development of Pd/TiO(2) Porous Layers by Pulsed Laser Deposition for Surface Acoustic Wave H(2) Gas Sensor |
title_fullStr | Development of Pd/TiO(2) Porous Layers by Pulsed Laser Deposition for Surface Acoustic Wave H(2) Gas Sensor |
title_full_unstemmed | Development of Pd/TiO(2) Porous Layers by Pulsed Laser Deposition for Surface Acoustic Wave H(2) Gas Sensor |
title_short | Development of Pd/TiO(2) Porous Layers by Pulsed Laser Deposition for Surface Acoustic Wave H(2) Gas Sensor |
title_sort | development of pd/tio(2) porous layers by pulsed laser deposition for surface acoustic wave h(2) gas sensor |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7221725/ https://www.ncbi.nlm.nih.gov/pubmed/32326639 http://dx.doi.org/10.3390/nano10040760 |
work_keys_str_mv | AT constantinoiuizabela developmentofpdtio2porouslayersbypulsedlaserdepositionforsurfaceacousticwaveh2gassensor AT viespecristian developmentofpdtio2porouslayersbypulsedlaserdepositionforsurfaceacousticwaveh2gassensor |