Cargando…

TNFa and IL2 Encoding Oncolytic Adenovirus Activates Pathogen and Danger-Associated Immunological Signaling

In order to break tumor resistance towards traditional treatments, we investigate the response of tumor and immune cells to a novel, cytokine-armed oncolytic adenovirus: Ad5/3-d24-E2F-hTNFa-IRES-hIL2 (also known as TILT-123 and OAd.TNFa-IL2). There are several pattern recognition receptors (PRR) tha...

Descripción completa

Detalles Bibliográficos
Autores principales: Heiniö, Camilla, Havunen, Riikka, Santos, Joao, de Lint, Klaas, Cervera-Carrascon, Victor, Kanerva, Anna, Hemminki, Akseli
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7225950/
https://www.ncbi.nlm.nih.gov/pubmed/32225009
http://dx.doi.org/10.3390/cells9040798
Descripción
Sumario:In order to break tumor resistance towards traditional treatments, we investigate the response of tumor and immune cells to a novel, cytokine-armed oncolytic adenovirus: Ad5/3-d24-E2F-hTNFa-IRES-hIL2 (also known as TILT-123 and OAd.TNFa-IL2). There are several pattern recognition receptors (PRR) that might mediate adenovirus-infection recognition. However, the role and specific effects of each PRR on the tumor microenvironment and treatment outcome remain unclear. Hence, the aim of this study was to investigate the effects of OAd.TNFa-IL2 infection on PRR-mediated danger- and pathogen-associated molecular pattern (DAMP and PAMP, respectively) signaling. In addition, we wanted to see which PRRs mediate an antitumor response and are therefore relevant for optimizing this virotherapy. We determined that OAd.TNFa-IL2 induced DAMP and PAMP release and consequent tumor microenvironment modulation. We show that the AIM2 inflammasome is activated during OAd.TNFa-IL2 virotherapy, thus creating an immunostimulatory antitumor microenvironment.