Cargando…
ERCC1–XPF targeting to psoralen–DNA crosslinks depends on XPA and FANCD2
The effectiveness of many DNA-damaging chemotherapeutic drugs depends on their ability to form monoadducts, intrastrand crosslinks and/or interstrand crosslinks (ICLs) that interfere with transcription and replication. The ERCC1–XPF endonuclease plays a critical role in removal of these lesions by i...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7228994/ https://www.ncbi.nlm.nih.gov/pubmed/31392348 http://dx.doi.org/10.1007/s00018-019-03264-5 |
_version_ | 1783534676698202112 |
---|---|
author | Sabatella, Mariangela Pines, Alex Slyskova, Jana Vermeulen, Wim Lans, Hannes |
author_facet | Sabatella, Mariangela Pines, Alex Slyskova, Jana Vermeulen, Wim Lans, Hannes |
author_sort | Sabatella, Mariangela |
collection | PubMed |
description | The effectiveness of many DNA-damaging chemotherapeutic drugs depends on their ability to form monoadducts, intrastrand crosslinks and/or interstrand crosslinks (ICLs) that interfere with transcription and replication. The ERCC1–XPF endonuclease plays a critical role in removal of these lesions by incising DNA either as part of nucleotide excision repair (NER) or interstrand crosslink repair (ICLR). Engagement of ERCC1–XPF in NER is well characterized and is facilitated by binding to the XPA protein. However, ERCC1–XPF recruitment to ICLs is less well understood. Moreover, specific mutations in XPF have been found to disrupt its function in ICLR but not in NER, but whether this involves differences in lesion targeting is unknown. Here, we imaged GFP-tagged ERCC1, XPF and ICLR-defective XPF mutants to investigate how in human cells ERCC1–XPF is localized to different types of psoralen-induced DNA lesions, repaired by either NER or ICLR. Our results confirm its dependence on XPA in NER and furthermore show that its engagement in ICLR is dependent on FANCD2. Interestingly, we find that two ICLR-defective XPF mutants (R689S and S786F) are less well recruited to ICLs. These studies highlight the differential mechanisms that regulate ERCC1–XPF activity in DNA repair. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s00018-019-03264-5) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-7228994 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Springer International Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-72289942020-05-18 ERCC1–XPF targeting to psoralen–DNA crosslinks depends on XPA and FANCD2 Sabatella, Mariangela Pines, Alex Slyskova, Jana Vermeulen, Wim Lans, Hannes Cell Mol Life Sci Original Article The effectiveness of many DNA-damaging chemotherapeutic drugs depends on their ability to form monoadducts, intrastrand crosslinks and/or interstrand crosslinks (ICLs) that interfere with transcription and replication. The ERCC1–XPF endonuclease plays a critical role in removal of these lesions by incising DNA either as part of nucleotide excision repair (NER) or interstrand crosslink repair (ICLR). Engagement of ERCC1–XPF in NER is well characterized and is facilitated by binding to the XPA protein. However, ERCC1–XPF recruitment to ICLs is less well understood. Moreover, specific mutations in XPF have been found to disrupt its function in ICLR but not in NER, but whether this involves differences in lesion targeting is unknown. Here, we imaged GFP-tagged ERCC1, XPF and ICLR-defective XPF mutants to investigate how in human cells ERCC1–XPF is localized to different types of psoralen-induced DNA lesions, repaired by either NER or ICLR. Our results confirm its dependence on XPA in NER and furthermore show that its engagement in ICLR is dependent on FANCD2. Interestingly, we find that two ICLR-defective XPF mutants (R689S and S786F) are less well recruited to ICLs. These studies highlight the differential mechanisms that regulate ERCC1–XPF activity in DNA repair. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s00018-019-03264-5) contains supplementary material, which is available to authorized users. Springer International Publishing 2019-08-07 2020 /pmc/articles/PMC7228994/ /pubmed/31392348 http://dx.doi.org/10.1007/s00018-019-03264-5 Text en © The Author(s) 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Original Article Sabatella, Mariangela Pines, Alex Slyskova, Jana Vermeulen, Wim Lans, Hannes ERCC1–XPF targeting to psoralen–DNA crosslinks depends on XPA and FANCD2 |
title | ERCC1–XPF targeting to psoralen–DNA crosslinks depends on XPA and FANCD2 |
title_full | ERCC1–XPF targeting to psoralen–DNA crosslinks depends on XPA and FANCD2 |
title_fullStr | ERCC1–XPF targeting to psoralen–DNA crosslinks depends on XPA and FANCD2 |
title_full_unstemmed | ERCC1–XPF targeting to psoralen–DNA crosslinks depends on XPA and FANCD2 |
title_short | ERCC1–XPF targeting to psoralen–DNA crosslinks depends on XPA and FANCD2 |
title_sort | ercc1–xpf targeting to psoralen–dna crosslinks depends on xpa and fancd2 |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7228994/ https://www.ncbi.nlm.nih.gov/pubmed/31392348 http://dx.doi.org/10.1007/s00018-019-03264-5 |
work_keys_str_mv | AT sabatellamariangela ercc1xpftargetingtopsoralendnacrosslinksdependsonxpaandfancd2 AT pinesalex ercc1xpftargetingtopsoralendnacrosslinksdependsonxpaandfancd2 AT slyskovajana ercc1xpftargetingtopsoralendnacrosslinksdependsonxpaandfancd2 AT vermeulenwim ercc1xpftargetingtopsoralendnacrosslinksdependsonxpaandfancd2 AT lanshannes ercc1xpftargetingtopsoralendnacrosslinksdependsonxpaandfancd2 |