Cargando…
Network-Based Single-Cell RNA-Seq Data Imputation Enhances Cell Type Identification
Single-cell RNA sequencing is a powerful technology for obtaining transcriptomes at single-cell resolutions. However, it suffers from dropout events (i.e., excess zero counts) since only a small fraction of transcripts get sequenced in each cell during the sequencing process. This inherent sparsity...
Autores principales: | Zand, Maryam, Ruan, Jianhua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7230610/ https://www.ncbi.nlm.nih.gov/pubmed/32244427 http://dx.doi.org/10.3390/genes11040377 |
Ejemplares similares
-
AutoImpute: Autoencoder based imputation of single-cell RNA-seq data
por: Talwar, Divyanshu, et al.
Publicado: (2018) -
McImpute: Matrix Completion Based Imputation for Single Cell RNA-seq Data
por: Mongia, Aanchal, et al.
Publicado: (2019) -
Epi-Impute: Single-Cell RNA-seq Imputation via Integration with Single-Cell ATAC-seq
por: Raevskiy, Mikhail, et al.
Publicado: (2023) -
A flexible network-based imputing-and-fusing approach towards the identification of cell types from single-cell RNA-seq data
por: Qi, Yang, et al.
Publicado: (2020) -
An accurate and robust imputation method scImpute for single-cell RNA-seq data
por: Li, Wei Vivian, et al.
Publicado: (2018)