Cargando…
Improved metabolomic data-based prediction of depressive symptoms using nonlinear machine learning with feature selection
To solve major limitations in algorithms for the metabolite-based prediction of psychiatric phenotypes, a novel prediction model for depressive symptoms based on nonlinear feature selection machine learning, the Hilbert–Schmidt independence criterion least absolute shrinkage and selection operator (...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7237664/ https://www.ncbi.nlm.nih.gov/pubmed/32427830 http://dx.doi.org/10.1038/s41398-020-0831-9 |