Cargando…
Improved metabolomic data-based prediction of depressive symptoms using nonlinear machine learning with feature selection
To solve major limitations in algorithms for the metabolite-based prediction of psychiatric phenotypes, a novel prediction model for depressive symptoms based on nonlinear feature selection machine learning, the Hilbert–Schmidt independence criterion least absolute shrinkage and selection operator (...
Autores principales: | Takahashi, Yuta, Ueki, Masao, Yamada, Makoto, Tamiya, Gen, Motoike, Ikuko N., Saigusa, Daisuke, Sakurai, Miyuki, Nagami, Fuji, Ogishima, Soichi, Koshiba, Seizo, Kinoshita, Kengo, Yamamoto, Masayuki, Tomita, Hiroaki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7237664/ https://www.ncbi.nlm.nih.gov/pubmed/32427830 http://dx.doi.org/10.1038/s41398-020-0831-9 |
Ejemplares similares
-
Machine learning for effectively avoiding overfitting is a crucial strategy for the genetic prediction of polygenic psychiatric phenotypes
por: Takahashi, Yuta, et al.
Publicado: (2020) -
Identification of critical genetic variants associated with metabolic phenotypes of the Japanese population
por: Koshiba, Seizo, et al.
Publicado: (2020) -
Establishment of Protocols for Global Metabolomics by LC-MS for Biomarker Discovery
por: Saigusa, Daisuke, et al.
Publicado: (2016) -
jMorp: Japanese Multi Omics Reference Panel
por: Tadaka, Shu, et al.
Publicado: (2018) -
Comparison of Kit-Based Metabolomics with Other Methodologies in a Large Cohort, towards Establishing Reference Values
por: Saigusa, Daisuke, et al.
Publicado: (2021)