Cargando…

Identification of genomic enhancers through spatial integration of single‐cell transcriptomics and epigenomics

Single‐cell technologies allow measuring chromatin accessibility and gene expression in each cell, but jointly utilizing both layers to map bona fide gene regulatory networks and enhancers remains challenging. Here, we generate independent single‐cell RNA‐seq and single‐cell ATAC‐seq atlases of the...

Descripción completa

Detalles Bibliográficos
Autores principales: Bravo González‐Blas, Carmen, Quan, Xiao‐Jiang, Duran‐Romaña, Ramon, Taskiran, Ibrahim Ihsan, Koldere, Duygu, Davie, Kristofer, Christiaens, Valerie, Makhzami, Samira, Hulselmans, Gert, de Waegeneer, Maxime, Mauduit, David, Poovathingal, Suresh, Aibar, Sara, Aerts, Stein
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7237818/
https://www.ncbi.nlm.nih.gov/pubmed/32431014
http://dx.doi.org/10.15252/msb.20209438
_version_ 1783536404841627648
author Bravo González‐Blas, Carmen
Quan, Xiao‐Jiang
Duran‐Romaña, Ramon
Taskiran, Ibrahim Ihsan
Koldere, Duygu
Davie, Kristofer
Christiaens, Valerie
Makhzami, Samira
Hulselmans, Gert
de Waegeneer, Maxime
Mauduit, David
Poovathingal, Suresh
Aibar, Sara
Aerts, Stein
author_facet Bravo González‐Blas, Carmen
Quan, Xiao‐Jiang
Duran‐Romaña, Ramon
Taskiran, Ibrahim Ihsan
Koldere, Duygu
Davie, Kristofer
Christiaens, Valerie
Makhzami, Samira
Hulselmans, Gert
de Waegeneer, Maxime
Mauduit, David
Poovathingal, Suresh
Aibar, Sara
Aerts, Stein
author_sort Bravo González‐Blas, Carmen
collection PubMed
description Single‐cell technologies allow measuring chromatin accessibility and gene expression in each cell, but jointly utilizing both layers to map bona fide gene regulatory networks and enhancers remains challenging. Here, we generate independent single‐cell RNA‐seq and single‐cell ATAC‐seq atlases of the Drosophila eye‐antennal disc and spatially integrate the data into a virtual latent space that mimics the organization of the 2D tissue using ScoMAP (Single‐Cell Omics Mapping into spatial Axes using Pseudotime ordering). To validate spatially predicted enhancers, we use a large collection of enhancer–reporter lines and identify ~ 85% of enhancers in which chromatin accessibility and enhancer activity are coupled. Next, we infer enhancer‐to‐gene relationships in the virtual space, finding that genes are mostly regulated by multiple, often redundant, enhancers. Exploiting cell type‐specific enhancers, we deconvolute cell type‐specific effects of bulk‐derived chromatin accessibility QTLs. Finally, we discover that Prospero drives neuronal differentiation through the binding of a GGG motif. In summary, we provide a comprehensive spatial characterization of gene regulation in a 2D tissue.
format Online
Article
Text
id pubmed-7237818
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-72378182020-05-22 Identification of genomic enhancers through spatial integration of single‐cell transcriptomics and epigenomics Bravo González‐Blas, Carmen Quan, Xiao‐Jiang Duran‐Romaña, Ramon Taskiran, Ibrahim Ihsan Koldere, Duygu Davie, Kristofer Christiaens, Valerie Makhzami, Samira Hulselmans, Gert de Waegeneer, Maxime Mauduit, David Poovathingal, Suresh Aibar, Sara Aerts, Stein Mol Syst Biol Articles Single‐cell technologies allow measuring chromatin accessibility and gene expression in each cell, but jointly utilizing both layers to map bona fide gene regulatory networks and enhancers remains challenging. Here, we generate independent single‐cell RNA‐seq and single‐cell ATAC‐seq atlases of the Drosophila eye‐antennal disc and spatially integrate the data into a virtual latent space that mimics the organization of the 2D tissue using ScoMAP (Single‐Cell Omics Mapping into spatial Axes using Pseudotime ordering). To validate spatially predicted enhancers, we use a large collection of enhancer–reporter lines and identify ~ 85% of enhancers in which chromatin accessibility and enhancer activity are coupled. Next, we infer enhancer‐to‐gene relationships in the virtual space, finding that genes are mostly regulated by multiple, often redundant, enhancers. Exploiting cell type‐specific enhancers, we deconvolute cell type‐specific effects of bulk‐derived chromatin accessibility QTLs. Finally, we discover that Prospero drives neuronal differentiation through the binding of a GGG motif. In summary, we provide a comprehensive spatial characterization of gene regulation in a 2D tissue. John Wiley and Sons Inc. 2020-05-19 /pmc/articles/PMC7237818/ /pubmed/32431014 http://dx.doi.org/10.15252/msb.20209438 Text en © 2020 The Authors. Published under the terms of the CC BY 4.0 license This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Articles
Bravo González‐Blas, Carmen
Quan, Xiao‐Jiang
Duran‐Romaña, Ramon
Taskiran, Ibrahim Ihsan
Koldere, Duygu
Davie, Kristofer
Christiaens, Valerie
Makhzami, Samira
Hulselmans, Gert
de Waegeneer, Maxime
Mauduit, David
Poovathingal, Suresh
Aibar, Sara
Aerts, Stein
Identification of genomic enhancers through spatial integration of single‐cell transcriptomics and epigenomics
title Identification of genomic enhancers through spatial integration of single‐cell transcriptomics and epigenomics
title_full Identification of genomic enhancers through spatial integration of single‐cell transcriptomics and epigenomics
title_fullStr Identification of genomic enhancers through spatial integration of single‐cell transcriptomics and epigenomics
title_full_unstemmed Identification of genomic enhancers through spatial integration of single‐cell transcriptomics and epigenomics
title_short Identification of genomic enhancers through spatial integration of single‐cell transcriptomics and epigenomics
title_sort identification of genomic enhancers through spatial integration of single‐cell transcriptomics and epigenomics
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7237818/
https://www.ncbi.nlm.nih.gov/pubmed/32431014
http://dx.doi.org/10.15252/msb.20209438
work_keys_str_mv AT bravogonzalezblascarmen identificationofgenomicenhancersthroughspatialintegrationofsinglecelltranscriptomicsandepigenomics
AT quanxiaojiang identificationofgenomicenhancersthroughspatialintegrationofsinglecelltranscriptomicsandepigenomics
AT duranromanaramon identificationofgenomicenhancersthroughspatialintegrationofsinglecelltranscriptomicsandepigenomics
AT taskiranibrahimihsan identificationofgenomicenhancersthroughspatialintegrationofsinglecelltranscriptomicsandepigenomics
AT koldereduygu identificationofgenomicenhancersthroughspatialintegrationofsinglecelltranscriptomicsandepigenomics
AT daviekristofer identificationofgenomicenhancersthroughspatialintegrationofsinglecelltranscriptomicsandepigenomics
AT christiaensvalerie identificationofgenomicenhancersthroughspatialintegrationofsinglecelltranscriptomicsandepigenomics
AT makhzamisamira identificationofgenomicenhancersthroughspatialintegrationofsinglecelltranscriptomicsandepigenomics
AT hulselmansgert identificationofgenomicenhancersthroughspatialintegrationofsinglecelltranscriptomicsandepigenomics
AT dewaegeneermaxime identificationofgenomicenhancersthroughspatialintegrationofsinglecelltranscriptomicsandepigenomics
AT mauduitdavid identificationofgenomicenhancersthroughspatialintegrationofsinglecelltranscriptomicsandepigenomics
AT poovathingalsuresh identificationofgenomicenhancersthroughspatialintegrationofsinglecelltranscriptomicsandepigenomics
AT aibarsara identificationofgenomicenhancersthroughspatialintegrationofsinglecelltranscriptomicsandepigenomics
AT aertsstein identificationofgenomicenhancersthroughspatialintegrationofsinglecelltranscriptomicsandepigenomics