Cargando…
Identification of genomic enhancers through spatial integration of single‐cell transcriptomics and epigenomics
Single‐cell technologies allow measuring chromatin accessibility and gene expression in each cell, but jointly utilizing both layers to map bona fide gene regulatory networks and enhancers remains challenging. Here, we generate independent single‐cell RNA‐seq and single‐cell ATAC‐seq atlases of the...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7237818/ https://www.ncbi.nlm.nih.gov/pubmed/32431014 http://dx.doi.org/10.15252/msb.20209438 |
_version_ | 1783536404841627648 |
---|---|
author | Bravo González‐Blas, Carmen Quan, Xiao‐Jiang Duran‐Romaña, Ramon Taskiran, Ibrahim Ihsan Koldere, Duygu Davie, Kristofer Christiaens, Valerie Makhzami, Samira Hulselmans, Gert de Waegeneer, Maxime Mauduit, David Poovathingal, Suresh Aibar, Sara Aerts, Stein |
author_facet | Bravo González‐Blas, Carmen Quan, Xiao‐Jiang Duran‐Romaña, Ramon Taskiran, Ibrahim Ihsan Koldere, Duygu Davie, Kristofer Christiaens, Valerie Makhzami, Samira Hulselmans, Gert de Waegeneer, Maxime Mauduit, David Poovathingal, Suresh Aibar, Sara Aerts, Stein |
author_sort | Bravo González‐Blas, Carmen |
collection | PubMed |
description | Single‐cell technologies allow measuring chromatin accessibility and gene expression in each cell, but jointly utilizing both layers to map bona fide gene regulatory networks and enhancers remains challenging. Here, we generate independent single‐cell RNA‐seq and single‐cell ATAC‐seq atlases of the Drosophila eye‐antennal disc and spatially integrate the data into a virtual latent space that mimics the organization of the 2D tissue using ScoMAP (Single‐Cell Omics Mapping into spatial Axes using Pseudotime ordering). To validate spatially predicted enhancers, we use a large collection of enhancer–reporter lines and identify ~ 85% of enhancers in which chromatin accessibility and enhancer activity are coupled. Next, we infer enhancer‐to‐gene relationships in the virtual space, finding that genes are mostly regulated by multiple, often redundant, enhancers. Exploiting cell type‐specific enhancers, we deconvolute cell type‐specific effects of bulk‐derived chromatin accessibility QTLs. Finally, we discover that Prospero drives neuronal differentiation through the binding of a GGG motif. In summary, we provide a comprehensive spatial characterization of gene regulation in a 2D tissue. |
format | Online Article Text |
id | pubmed-7237818 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-72378182020-05-22 Identification of genomic enhancers through spatial integration of single‐cell transcriptomics and epigenomics Bravo González‐Blas, Carmen Quan, Xiao‐Jiang Duran‐Romaña, Ramon Taskiran, Ibrahim Ihsan Koldere, Duygu Davie, Kristofer Christiaens, Valerie Makhzami, Samira Hulselmans, Gert de Waegeneer, Maxime Mauduit, David Poovathingal, Suresh Aibar, Sara Aerts, Stein Mol Syst Biol Articles Single‐cell technologies allow measuring chromatin accessibility and gene expression in each cell, but jointly utilizing both layers to map bona fide gene regulatory networks and enhancers remains challenging. Here, we generate independent single‐cell RNA‐seq and single‐cell ATAC‐seq atlases of the Drosophila eye‐antennal disc and spatially integrate the data into a virtual latent space that mimics the organization of the 2D tissue using ScoMAP (Single‐Cell Omics Mapping into spatial Axes using Pseudotime ordering). To validate spatially predicted enhancers, we use a large collection of enhancer–reporter lines and identify ~ 85% of enhancers in which chromatin accessibility and enhancer activity are coupled. Next, we infer enhancer‐to‐gene relationships in the virtual space, finding that genes are mostly regulated by multiple, often redundant, enhancers. Exploiting cell type‐specific enhancers, we deconvolute cell type‐specific effects of bulk‐derived chromatin accessibility QTLs. Finally, we discover that Prospero drives neuronal differentiation through the binding of a GGG motif. In summary, we provide a comprehensive spatial characterization of gene regulation in a 2D tissue. John Wiley and Sons Inc. 2020-05-19 /pmc/articles/PMC7237818/ /pubmed/32431014 http://dx.doi.org/10.15252/msb.20209438 Text en © 2020 The Authors. Published under the terms of the CC BY 4.0 license This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Articles Bravo González‐Blas, Carmen Quan, Xiao‐Jiang Duran‐Romaña, Ramon Taskiran, Ibrahim Ihsan Koldere, Duygu Davie, Kristofer Christiaens, Valerie Makhzami, Samira Hulselmans, Gert de Waegeneer, Maxime Mauduit, David Poovathingal, Suresh Aibar, Sara Aerts, Stein Identification of genomic enhancers through spatial integration of single‐cell transcriptomics and epigenomics |
title | Identification of genomic enhancers through spatial integration of single‐cell transcriptomics and epigenomics |
title_full | Identification of genomic enhancers through spatial integration of single‐cell transcriptomics and epigenomics |
title_fullStr | Identification of genomic enhancers through spatial integration of single‐cell transcriptomics and epigenomics |
title_full_unstemmed | Identification of genomic enhancers through spatial integration of single‐cell transcriptomics and epigenomics |
title_short | Identification of genomic enhancers through spatial integration of single‐cell transcriptomics and epigenomics |
title_sort | identification of genomic enhancers through spatial integration of single‐cell transcriptomics and epigenomics |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7237818/ https://www.ncbi.nlm.nih.gov/pubmed/32431014 http://dx.doi.org/10.15252/msb.20209438 |
work_keys_str_mv | AT bravogonzalezblascarmen identificationofgenomicenhancersthroughspatialintegrationofsinglecelltranscriptomicsandepigenomics AT quanxiaojiang identificationofgenomicenhancersthroughspatialintegrationofsinglecelltranscriptomicsandepigenomics AT duranromanaramon identificationofgenomicenhancersthroughspatialintegrationofsinglecelltranscriptomicsandepigenomics AT taskiranibrahimihsan identificationofgenomicenhancersthroughspatialintegrationofsinglecelltranscriptomicsandepigenomics AT koldereduygu identificationofgenomicenhancersthroughspatialintegrationofsinglecelltranscriptomicsandepigenomics AT daviekristofer identificationofgenomicenhancersthroughspatialintegrationofsinglecelltranscriptomicsandepigenomics AT christiaensvalerie identificationofgenomicenhancersthroughspatialintegrationofsinglecelltranscriptomicsandepigenomics AT makhzamisamira identificationofgenomicenhancersthroughspatialintegrationofsinglecelltranscriptomicsandepigenomics AT hulselmansgert identificationofgenomicenhancersthroughspatialintegrationofsinglecelltranscriptomicsandepigenomics AT dewaegeneermaxime identificationofgenomicenhancersthroughspatialintegrationofsinglecelltranscriptomicsandepigenomics AT mauduitdavid identificationofgenomicenhancersthroughspatialintegrationofsinglecelltranscriptomicsandepigenomics AT poovathingalsuresh identificationofgenomicenhancersthroughspatialintegrationofsinglecelltranscriptomicsandepigenomics AT aibarsara identificationofgenomicenhancersthroughspatialintegrationofsinglecelltranscriptomicsandepigenomics AT aertsstein identificationofgenomicenhancersthroughspatialintegrationofsinglecelltranscriptomicsandepigenomics |