Cargando…

Heterochromatin-Driven Nuclear Softening Protects the Genome against Mechanical Stress-Induced Damage

Tissue homeostasis requires maintenance of functional integrity under stress. A central source of stress is mechanical force that acts on cells, their nuclei, and chromatin, but how the genome is protected against mechanical stress is unclear. We show that mechanical stretch deforms the nucleus, whi...

Descripción completa

Detalles Bibliográficos
Autores principales: Nava, Michele M., Miroshnikova, Yekaterina A., Biggs, Leah C., Whitefield, Daniel B., Metge, Franziska, Boucas, Jorge, Vihinen, Helena, Jokitalo, Eija, Li, Xinping, García Arcos, Juan Manuel, Hoffmann, Bernd, Merkel, Rudolf, Niessen, Carien M., Dahl, Kris Noel, Wickström, Sara A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cell Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7237863/
https://www.ncbi.nlm.nih.gov/pubmed/32302590
http://dx.doi.org/10.1016/j.cell.2020.03.052
_version_ 1783536412257157120
author Nava, Michele M.
Miroshnikova, Yekaterina A.
Biggs, Leah C.
Whitefield, Daniel B.
Metge, Franziska
Boucas, Jorge
Vihinen, Helena
Jokitalo, Eija
Li, Xinping
García Arcos, Juan Manuel
Hoffmann, Bernd
Merkel, Rudolf
Niessen, Carien M.
Dahl, Kris Noel
Wickström, Sara A.
author_facet Nava, Michele M.
Miroshnikova, Yekaterina A.
Biggs, Leah C.
Whitefield, Daniel B.
Metge, Franziska
Boucas, Jorge
Vihinen, Helena
Jokitalo, Eija
Li, Xinping
García Arcos, Juan Manuel
Hoffmann, Bernd
Merkel, Rudolf
Niessen, Carien M.
Dahl, Kris Noel
Wickström, Sara A.
author_sort Nava, Michele M.
collection PubMed
description Tissue homeostasis requires maintenance of functional integrity under stress. A central source of stress is mechanical force that acts on cells, their nuclei, and chromatin, but how the genome is protected against mechanical stress is unclear. We show that mechanical stretch deforms the nucleus, which cells initially counteract via a calcium-dependent nuclear softening driven by loss of H3K9me3-marked heterochromatin. The resulting changes in chromatin rheology and architecture are required to insulate genetic material from mechanical force. Failure to mount this nuclear mechanoresponse results in DNA damage. Persistent, high-amplitude stretch induces supracellular alignment of tissue to redistribute mechanical energy before it reaches the nucleus. This tissue-scale mechanoadaptation functions through a separate pathway mediated by cell-cell contacts and allows cells/tissues to switch off nuclear mechanotransduction to restore initial chromatin state. Our work identifies an unconventional role of chromatin in altering its own mechanical state to maintain genome integrity in response to deformation.
format Online
Article
Text
id pubmed-7237863
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Cell Press
record_format MEDLINE/PubMed
spelling pubmed-72378632020-05-26 Heterochromatin-Driven Nuclear Softening Protects the Genome against Mechanical Stress-Induced Damage Nava, Michele M. Miroshnikova, Yekaterina A. Biggs, Leah C. Whitefield, Daniel B. Metge, Franziska Boucas, Jorge Vihinen, Helena Jokitalo, Eija Li, Xinping García Arcos, Juan Manuel Hoffmann, Bernd Merkel, Rudolf Niessen, Carien M. Dahl, Kris Noel Wickström, Sara A. Cell Article Tissue homeostasis requires maintenance of functional integrity under stress. A central source of stress is mechanical force that acts on cells, their nuclei, and chromatin, but how the genome is protected against mechanical stress is unclear. We show that mechanical stretch deforms the nucleus, which cells initially counteract via a calcium-dependent nuclear softening driven by loss of H3K9me3-marked heterochromatin. The resulting changes in chromatin rheology and architecture are required to insulate genetic material from mechanical force. Failure to mount this nuclear mechanoresponse results in DNA damage. Persistent, high-amplitude stretch induces supracellular alignment of tissue to redistribute mechanical energy before it reaches the nucleus. This tissue-scale mechanoadaptation functions through a separate pathway mediated by cell-cell contacts and allows cells/tissues to switch off nuclear mechanotransduction to restore initial chromatin state. Our work identifies an unconventional role of chromatin in altering its own mechanical state to maintain genome integrity in response to deformation. Cell Press 2020-05-14 /pmc/articles/PMC7237863/ /pubmed/32302590 http://dx.doi.org/10.1016/j.cell.2020.03.052 Text en © 2020 The Author(s) http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Nava, Michele M.
Miroshnikova, Yekaterina A.
Biggs, Leah C.
Whitefield, Daniel B.
Metge, Franziska
Boucas, Jorge
Vihinen, Helena
Jokitalo, Eija
Li, Xinping
García Arcos, Juan Manuel
Hoffmann, Bernd
Merkel, Rudolf
Niessen, Carien M.
Dahl, Kris Noel
Wickström, Sara A.
Heterochromatin-Driven Nuclear Softening Protects the Genome against Mechanical Stress-Induced Damage
title Heterochromatin-Driven Nuclear Softening Protects the Genome against Mechanical Stress-Induced Damage
title_full Heterochromatin-Driven Nuclear Softening Protects the Genome against Mechanical Stress-Induced Damage
title_fullStr Heterochromatin-Driven Nuclear Softening Protects the Genome against Mechanical Stress-Induced Damage
title_full_unstemmed Heterochromatin-Driven Nuclear Softening Protects the Genome against Mechanical Stress-Induced Damage
title_short Heterochromatin-Driven Nuclear Softening Protects the Genome against Mechanical Stress-Induced Damage
title_sort heterochromatin-driven nuclear softening protects the genome against mechanical stress-induced damage
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7237863/
https://www.ncbi.nlm.nih.gov/pubmed/32302590
http://dx.doi.org/10.1016/j.cell.2020.03.052
work_keys_str_mv AT navamichelem heterochromatindrivennuclearsofteningprotectsthegenomeagainstmechanicalstressinduceddamage
AT miroshnikovayekaterinaa heterochromatindrivennuclearsofteningprotectsthegenomeagainstmechanicalstressinduceddamage
AT biggsleahc heterochromatindrivennuclearsofteningprotectsthegenomeagainstmechanicalstressinduceddamage
AT whitefielddanielb heterochromatindrivennuclearsofteningprotectsthegenomeagainstmechanicalstressinduceddamage
AT metgefranziska heterochromatindrivennuclearsofteningprotectsthegenomeagainstmechanicalstressinduceddamage
AT boucasjorge heterochromatindrivennuclearsofteningprotectsthegenomeagainstmechanicalstressinduceddamage
AT vihinenhelena heterochromatindrivennuclearsofteningprotectsthegenomeagainstmechanicalstressinduceddamage
AT jokitaloeija heterochromatindrivennuclearsofteningprotectsthegenomeagainstmechanicalstressinduceddamage
AT lixinping heterochromatindrivennuclearsofteningprotectsthegenomeagainstmechanicalstressinduceddamage
AT garciaarcosjuanmanuel heterochromatindrivennuclearsofteningprotectsthegenomeagainstmechanicalstressinduceddamage
AT hoffmannbernd heterochromatindrivennuclearsofteningprotectsthegenomeagainstmechanicalstressinduceddamage
AT merkelrudolf heterochromatindrivennuclearsofteningprotectsthegenomeagainstmechanicalstressinduceddamage
AT niessencarienm heterochromatindrivennuclearsofteningprotectsthegenomeagainstmechanicalstressinduceddamage
AT dahlkrisnoel heterochromatindrivennuclearsofteningprotectsthegenomeagainstmechanicalstressinduceddamage
AT wickstromsaraa heterochromatindrivennuclearsofteningprotectsthegenomeagainstmechanicalstressinduceddamage