Cargando…
MicroRNA-148a regulates low-density lipoprotein metabolism by repressing the (pro)renin receptor
High plasma LDL cholesterol (LDL-c) concentration is a major risk factor for atherosclerosis. Hepatic LDL receptor (LDLR) regulates LDL metabolism, and thereby plasma LDL-c concentration. Recently, we have identified the (pro)renin receptor [(P)RR] as a novel regulator of LDL metabolism, which regul...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7241754/ https://www.ncbi.nlm.nih.gov/pubmed/32437440 http://dx.doi.org/10.1371/journal.pone.0225356 |
Sumario: | High plasma LDL cholesterol (LDL-c) concentration is a major risk factor for atherosclerosis. Hepatic LDL receptor (LDLR) regulates LDL metabolism, and thereby plasma LDL-c concentration. Recently, we have identified the (pro)renin receptor [(P)RR] as a novel regulator of LDL metabolism, which regulates LDLR degradation and hence its protein abundance and activity. In silico analysis suggests that the (P)RR is a target of miR-148a. In this study we determined whether miR-148a could regulate LDL metabolism by regulating (P)RR expression in HepG2 and Huh7 cells. We found that miR-148a suppressed (P)RR expression by binding to the 3’-untranslated regions (3’-UTR) of the (P)RR mRNA. Mutating the binding sites for miR-148a in the 3’-UTR of (P)RR mRNA completely abolished the inhibitory effects of miR-148a on (P)RR expression. In line with our recent findings, reduced (P)RR expression resulted in decreased cellular LDL uptake, likely as a consequence of decreased LDLR protein abundance. Overexpressing the (P)RR prevented miR-148a-induced reduction in LDLR abundance and cellular LDL uptake. Our study supports a new concept that miR-148a is a regulator of (P)RR expression. By reducing (P)RR abundance, miR-148a decreases LDLR protein abundance and consequently cellular LDL uptake. |
---|