Cargando…
Active metabolism unmasks functional protein–protein interactions in real time in-cell NMR
Protein–protein interactions, PPIs, underlie most cellular processes, but many PPIs depend on a particular metabolic state that can only be observed in live, actively metabolizing cells. Real time in-cell NMR spectroscopy, RT-NMR, utilizes a bioreactor to maintain cells in an active metabolic state....
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7242440/ https://www.ncbi.nlm.nih.gov/pubmed/32439966 http://dx.doi.org/10.1038/s42003-020-0976-3 |
Sumario: | Protein–protein interactions, PPIs, underlie most cellular processes, but many PPIs depend on a particular metabolic state that can only be observed in live, actively metabolizing cells. Real time in-cell NMR spectroscopy, RT-NMR, utilizes a bioreactor to maintain cells in an active metabolic state. Improvement in bioreactor technology maintains ATP levels at >95% for up to 24 hours, enabling protein overexpression and a previously undetected interaction between prokaryotic ubiquitin-like protein, Pup, and mycobacterial proteasomal ATPase, Mpa, to be detected. Singular value decomposition, SVD, of the NMR spectra collected over the course of Mpa overexpression easily identified the PPIs despite the large variation in background signals due to the highly active metabolome. |
---|