Cargando…
MetaPhat: Detecting and Decomposing Multivariate Associations From Univariate Genome-Wide Association Statistics
BACKGROUND: Multivariate testing tools that integrate multiple genome-wide association studies (GWAS) have become important as the number of phenotypes gathered from study cohorts and biobanks has increased. While these tools have been shown to boost statistical power considerably over univariate te...
Autores principales: | Lin, Jake, Tabassum, Rubina, Ripatti, Samuli, Pirinen, Matti |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7242752/ https://www.ncbi.nlm.nih.gov/pubmed/32499813 http://dx.doi.org/10.3389/fgene.2020.00431 |
Ejemplares similares
-
Comparison of F-tests for Univariate and Multivariate Mixed-Effect Models in Genome-Wide Association Mapping
por: Onogi, Akio
Publicado: (2019) -
Genome-wide association analysis of plasma lipidome identifies 495 genetic associations
por: Ottensmann, Linda, et al.
Publicado: (2023) -
metaCCA: summary statistics-based multivariate meta-analysis of genome-wide association studies using canonical correlation analysis
por: Cichonska, Anna, et al.
Publicado: (2016) -
Lipidome‐ and Genome‐Wide Study to Understand Sex Differences in Circulatory Lipids
por: Tabassum, Rubina, et al.
Publicado: (2022) -
How Well Can Multivariate and Univariate GWAS Distinguish Between True and Spurious Pleiotropy?
por: Fernandes, Samuel B., et al.
Publicado: (2021)