Cargando…
Protein Quality Control Pathways at the Crossroad of Synucleinopathies
The pathophysiology of Parkinson’s disease, dementia with Lewy bodies, multiple system atrophy, and many others converge at alpha-synuclein (α-Syn) aggregation. Although it is still not entirely clear what precise biophysical processes act as triggers, cumulative evidence points towards a crucial ro...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
IOS Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7242842/ https://www.ncbi.nlm.nih.gov/pubmed/31985474 http://dx.doi.org/10.3233/JPD-191790 |
Sumario: | The pathophysiology of Parkinson’s disease, dementia with Lewy bodies, multiple system atrophy, and many others converge at alpha-synuclein (α-Syn) aggregation. Although it is still not entirely clear what precise biophysical processes act as triggers, cumulative evidence points towards a crucial role for protein quality control (PQC) systems in modulating α-Syn aggregation and toxicity. These encompass distinct cellular strategies that tightly balance protein production, stability, and degradation, ultimately regulating α-Syn levels. Here, we review the main aspects of α-Syn biology, focusing on the cellular PQC components that are at the heart of recognizing and disposing toxic, aggregate-prone α-Syn assemblies: molecular chaperones and the ubiquitin-proteasome system and autophagy-lysosome pathway, respectively. A deeper understanding of these basic protein homeostasis mechanisms might contribute to the development of new therapeutic strategies envisioning the prevention and/or enhanced degradation of α-Syn aggregates. |
---|