Cargando…
Phosphoproteomics identifies dual-site phosphorylation in an extended basophilic motif regulating FILIP1-mediated degradation of filamin-C
The PI3K/Akt pathway promotes skeletal muscle growth and myogenic differentiation. Although its importance in skeletal muscle biology is well documented, many of its substrates remain to be identified. We here studied PI3K/Akt signaling in contracting skeletal muscle cells by quantitative phosphopro...
Autores principales: | , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7244511/ https://www.ncbi.nlm.nih.gov/pubmed/32444788 http://dx.doi.org/10.1038/s42003-020-0982-5 |
_version_ | 1783537588991164416 |
---|---|
author | Reimann, Lena Schwäble, Anja N. Fricke, Anna L. Mühlhäuser, Wignand W. D. Leber, Yvonne Lohanadan, Keerthika Puchinger, Martin G. Schäuble, Sascha Faessler, Erik Wiese, Heike Reichenbach, Christa Knapp, Bettina Peikert, Christian D. Drepper, Friedel Hahn, Udo Kreutz, Clemens van der Ven, Peter F. M. Radziwill, Gerald Djinović-Carugo, Kristina Fürst, Dieter O. Warscheid, Bettina |
author_facet | Reimann, Lena Schwäble, Anja N. Fricke, Anna L. Mühlhäuser, Wignand W. D. Leber, Yvonne Lohanadan, Keerthika Puchinger, Martin G. Schäuble, Sascha Faessler, Erik Wiese, Heike Reichenbach, Christa Knapp, Bettina Peikert, Christian D. Drepper, Friedel Hahn, Udo Kreutz, Clemens van der Ven, Peter F. M. Radziwill, Gerald Djinović-Carugo, Kristina Fürst, Dieter O. Warscheid, Bettina |
author_sort | Reimann, Lena |
collection | PubMed |
description | The PI3K/Akt pathway promotes skeletal muscle growth and myogenic differentiation. Although its importance in skeletal muscle biology is well documented, many of its substrates remain to be identified. We here studied PI3K/Akt signaling in contracting skeletal muscle cells by quantitative phosphoproteomics. We identified the extended basophilic phosphosite motif RxRxxp[S/T]xxp[S/T] in various proteins including filamin-C (FLNc). Importantly, this extended motif, located in a unique insert in Ig-like domain 20 of FLNc, is doubly phosphorylated. The protein kinases responsible for this dual-site phosphorylation are Akt and PKCα. Proximity proteomics and interaction analysis identified filamin A-interacting protein 1 (FILIP1) as direct FLNc binding partner. FILIP1 binding induces filamin degradation, thereby negatively regulating its function. Here, dual-site phosphorylation of FLNc not only reduces FILIP1 binding, providing a mechanism to shield FLNc from FILIP1-mediated degradation, but also enables fast dynamics of FLNc necessary for its function as signaling adaptor in cross-striated muscle cells. |
format | Online Article Text |
id | pubmed-7244511 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-72445112020-06-04 Phosphoproteomics identifies dual-site phosphorylation in an extended basophilic motif regulating FILIP1-mediated degradation of filamin-C Reimann, Lena Schwäble, Anja N. Fricke, Anna L. Mühlhäuser, Wignand W. D. Leber, Yvonne Lohanadan, Keerthika Puchinger, Martin G. Schäuble, Sascha Faessler, Erik Wiese, Heike Reichenbach, Christa Knapp, Bettina Peikert, Christian D. Drepper, Friedel Hahn, Udo Kreutz, Clemens van der Ven, Peter F. M. Radziwill, Gerald Djinović-Carugo, Kristina Fürst, Dieter O. Warscheid, Bettina Commun Biol Article The PI3K/Akt pathway promotes skeletal muscle growth and myogenic differentiation. Although its importance in skeletal muscle biology is well documented, many of its substrates remain to be identified. We here studied PI3K/Akt signaling in contracting skeletal muscle cells by quantitative phosphoproteomics. We identified the extended basophilic phosphosite motif RxRxxp[S/T]xxp[S/T] in various proteins including filamin-C (FLNc). Importantly, this extended motif, located in a unique insert in Ig-like domain 20 of FLNc, is doubly phosphorylated. The protein kinases responsible for this dual-site phosphorylation are Akt and PKCα. Proximity proteomics and interaction analysis identified filamin A-interacting protein 1 (FILIP1) as direct FLNc binding partner. FILIP1 binding induces filamin degradation, thereby negatively regulating its function. Here, dual-site phosphorylation of FLNc not only reduces FILIP1 binding, providing a mechanism to shield FLNc from FILIP1-mediated degradation, but also enables fast dynamics of FLNc necessary for its function as signaling adaptor in cross-striated muscle cells. Nature Publishing Group UK 2020-05-22 /pmc/articles/PMC7244511/ /pubmed/32444788 http://dx.doi.org/10.1038/s42003-020-0982-5 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Reimann, Lena Schwäble, Anja N. Fricke, Anna L. Mühlhäuser, Wignand W. D. Leber, Yvonne Lohanadan, Keerthika Puchinger, Martin G. Schäuble, Sascha Faessler, Erik Wiese, Heike Reichenbach, Christa Knapp, Bettina Peikert, Christian D. Drepper, Friedel Hahn, Udo Kreutz, Clemens van der Ven, Peter F. M. Radziwill, Gerald Djinović-Carugo, Kristina Fürst, Dieter O. Warscheid, Bettina Phosphoproteomics identifies dual-site phosphorylation in an extended basophilic motif regulating FILIP1-mediated degradation of filamin-C |
title | Phosphoproteomics identifies dual-site phosphorylation in an extended basophilic motif regulating FILIP1-mediated degradation of filamin-C |
title_full | Phosphoproteomics identifies dual-site phosphorylation in an extended basophilic motif regulating FILIP1-mediated degradation of filamin-C |
title_fullStr | Phosphoproteomics identifies dual-site phosphorylation in an extended basophilic motif regulating FILIP1-mediated degradation of filamin-C |
title_full_unstemmed | Phosphoproteomics identifies dual-site phosphorylation in an extended basophilic motif regulating FILIP1-mediated degradation of filamin-C |
title_short | Phosphoproteomics identifies dual-site phosphorylation in an extended basophilic motif regulating FILIP1-mediated degradation of filamin-C |
title_sort | phosphoproteomics identifies dual-site phosphorylation in an extended basophilic motif regulating filip1-mediated degradation of filamin-c |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7244511/ https://www.ncbi.nlm.nih.gov/pubmed/32444788 http://dx.doi.org/10.1038/s42003-020-0982-5 |
work_keys_str_mv | AT reimannlena phosphoproteomicsidentifiesdualsitephosphorylationinanextendedbasophilicmotifregulatingfilip1mediateddegradationoffilaminc AT schwableanjan phosphoproteomicsidentifiesdualsitephosphorylationinanextendedbasophilicmotifregulatingfilip1mediateddegradationoffilaminc AT frickeannal phosphoproteomicsidentifiesdualsitephosphorylationinanextendedbasophilicmotifregulatingfilip1mediateddegradationoffilaminc AT muhlhauserwignandwd phosphoproteomicsidentifiesdualsitephosphorylationinanextendedbasophilicmotifregulatingfilip1mediateddegradationoffilaminc AT leberyvonne phosphoproteomicsidentifiesdualsitephosphorylationinanextendedbasophilicmotifregulatingfilip1mediateddegradationoffilaminc AT lohanadankeerthika phosphoproteomicsidentifiesdualsitephosphorylationinanextendedbasophilicmotifregulatingfilip1mediateddegradationoffilaminc AT puchingermarting phosphoproteomicsidentifiesdualsitephosphorylationinanextendedbasophilicmotifregulatingfilip1mediateddegradationoffilaminc AT schaublesascha phosphoproteomicsidentifiesdualsitephosphorylationinanextendedbasophilicmotifregulatingfilip1mediateddegradationoffilaminc AT faesslererik phosphoproteomicsidentifiesdualsitephosphorylationinanextendedbasophilicmotifregulatingfilip1mediateddegradationoffilaminc AT wieseheike phosphoproteomicsidentifiesdualsitephosphorylationinanextendedbasophilicmotifregulatingfilip1mediateddegradationoffilaminc AT reichenbachchrista phosphoproteomicsidentifiesdualsitephosphorylationinanextendedbasophilicmotifregulatingfilip1mediateddegradationoffilaminc AT knappbettina phosphoproteomicsidentifiesdualsitephosphorylationinanextendedbasophilicmotifregulatingfilip1mediateddegradationoffilaminc AT peikertchristiand phosphoproteomicsidentifiesdualsitephosphorylationinanextendedbasophilicmotifregulatingfilip1mediateddegradationoffilaminc AT drepperfriedel phosphoproteomicsidentifiesdualsitephosphorylationinanextendedbasophilicmotifregulatingfilip1mediateddegradationoffilaminc AT hahnudo phosphoproteomicsidentifiesdualsitephosphorylationinanextendedbasophilicmotifregulatingfilip1mediateddegradationoffilaminc AT kreutzclemens phosphoproteomicsidentifiesdualsitephosphorylationinanextendedbasophilicmotifregulatingfilip1mediateddegradationoffilaminc AT vandervenpeterfm phosphoproteomicsidentifiesdualsitephosphorylationinanextendedbasophilicmotifregulatingfilip1mediateddegradationoffilaminc AT radziwillgerald phosphoproteomicsidentifiesdualsitephosphorylationinanextendedbasophilicmotifregulatingfilip1mediateddegradationoffilaminc AT djinoviccarugokristina phosphoproteomicsidentifiesdualsitephosphorylationinanextendedbasophilicmotifregulatingfilip1mediateddegradationoffilaminc AT furstdietero phosphoproteomicsidentifiesdualsitephosphorylationinanextendedbasophilicmotifregulatingfilip1mediateddegradationoffilaminc AT warscheidbettina phosphoproteomicsidentifiesdualsitephosphorylationinanextendedbasophilicmotifregulatingfilip1mediateddegradationoffilaminc |