Cargando…
N(6)-methyladenosine regulates glycolysis of cancer cells through PDK4
Studies on biological functions of N(6)-methyladenosine (m(6)A) modification in mRNA have sprung up in recent years. We find m(6)A can positively regulate the glycolysis of cancer cells. Specifically, m(6)A-sequencing and functional studies confirm that pyruvate dehydrogenase kinase 4 (PDK4) is invo...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7244544/ https://www.ncbi.nlm.nih.gov/pubmed/32444598 http://dx.doi.org/10.1038/s41467-020-16306-5 |
Sumario: | Studies on biological functions of N(6)-methyladenosine (m(6)A) modification in mRNA have sprung up in recent years. We find m(6)A can positively regulate the glycolysis of cancer cells. Specifically, m(6)A-sequencing and functional studies confirm that pyruvate dehydrogenase kinase 4 (PDK4) is involved in m(6)A regulated glycolysis and ATP generation. The m(6)A modified 5′UTR of PDK4 positively regulates its translation elongation and mRNA stability via binding with YTHDF1/eEF-2 complex and IGF2BP3, respectively. Targeted specific demethylation of PDK4 m(6)A by dm(6)ACRISPR system can significantly decrease the expression of PDK4 and glycolysis of cancer cells. Further, TATA-binding protein (TBP) can transcriptionally increase the expression of Mettl3 in cervical cancer cells via binding to its promoter. In vivo and clinical data confirm the positive roles of m(6)A/PDK4 in tumor growth and progression of cervical and liver cancer. Our study reveals that m(6)A regulates glycolysis of cancer cells through PDK4. |
---|