Cargando…
Self-Driving Car Location Estimation Based on a Particle-Aided Unscented Kalman Filter
Localization is one of the key components in the operation of self-driving cars. Owing to the noisy global positioning system (GPS) signal and multipath routing in urban environments, a novel, practical approach is needed. In this study, a sensor fusion approach for self-driving cars was developed....
Autores principales: | Lin, Ming, Yoon, Jaewoo, Kim, Byeongwoo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7249166/ https://www.ncbi.nlm.nih.gov/pubmed/32365721 http://dx.doi.org/10.3390/s20092544 |
Ejemplares similares
-
Unscented Kalman Filter for Brain-Machine Interfaces
por: Li, Zheng, et al.
Publicado: (2009) -
Unscented Kalman Filtering for Single Camera Based Motion and Shape Estimation
por: Jwo, Dah-Jing, et al.
Publicado: (2011) -
Maximum Correntropy Unscented Kalman Filter for Spacecraft Relative State Estimation
por: Liu, Xi, et al.
Publicado: (2016) -
Unscented Kalman filter for airship model uncertainties and wind disturbance estimation
por: Wasim, Muhammad, et al.
Publicado: (2021) -
Quaternion-Based Robust Attitude Estimation Using an Adaptive Unscented Kalman Filter
por: Chiella, Antônio C. B., et al.
Publicado: (2019)