Cargando…

Hepatic Transcript Profiles of Cytochrome P450 Genes Predict Sex Differences in Drug Metabolism

Safety assessments of new drug candidates are an important part of the drug development and approval process. Often, possible sex-associated susceptibilities are not adequately addressed, and better assessment tools are needed. We hypothesized that hepatic transcript profiles of cytochrome P450 (P45...

Descripción completa

Detalles Bibliográficos
Autores principales: Fuscoe, James C., Vijay, Vikrant, Hanig, Joseph P., Han, Tao, Ren, Lijun, Greenhaw, James J., Beger, Richard D., Pence, Lisa M., Shi, Qiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The American Society for Pharmacology and Experimental Therapeutics 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7250365/
https://www.ncbi.nlm.nih.gov/pubmed/32193355
http://dx.doi.org/10.1124/dmd.119.089367
_version_ 1783538750051057664
author Fuscoe, James C.
Vijay, Vikrant
Hanig, Joseph P.
Han, Tao
Ren, Lijun
Greenhaw, James J.
Beger, Richard D.
Pence, Lisa M.
Shi, Qiang
author_facet Fuscoe, James C.
Vijay, Vikrant
Hanig, Joseph P.
Han, Tao
Ren, Lijun
Greenhaw, James J.
Beger, Richard D.
Pence, Lisa M.
Shi, Qiang
author_sort Fuscoe, James C.
collection PubMed
description Safety assessments of new drug candidates are an important part of the drug development and approval process. Often, possible sex-associated susceptibilities are not adequately addressed, and better assessment tools are needed. We hypothesized that hepatic transcript profiles of cytochrome P450 (P450) enzymes can be used to predict sex-associated differences in drug metabolism and possible adverse events. Comprehensive hepatic transcript profiles were generated for F344 rats of both sexes at nine ages, from 2 weeks (preweaning) to 104 weeks (elderly). Large differences in the transcript profiles of 29 drug metabolizing enzymes and transporters were found between adult males and females (8–52 weeks). Using the PharmaPendium data base, 41 drugs were found to be metabolized by one or two P450 enzymes encoded by sexually dimorphic mRNAs and thus were candidates for evaluation of possible sexually dimorphic metabolism and/or toxicities. Suspension cultures of primary hepatocytes from three male and three female adult rats (10–13 weeks old) were used to evaluate the metabolism of 11 drugs predicted to have sexually dimorphic metabolism. The pharmacokinetics of the drug or its metabolite was analyzed by liquid chromatography/tandem mass spectrometry using multiple reaction monitoring. Of those drugs with adequate metabolism, the predicted significant sex-different metabolism was found for six of seven drugs, with half-lives 37%–400% longer in female hepatocytes than in male hepatocytes. Thus, in this rat model, transcript profiles may allow identification of potential sex-related differences in drug metabolism. SIGNIFICANCE STATEMENT: The present study showed that sex-different expression of genes coding for drug metabolizing enzymes, specifically cytochrome P450s, could be used to predict sex-different drug metabolism and, thus, provide a new tool for protecting susceptible subpopulations from possible adverse drug events.
format Online
Article
Text
id pubmed-7250365
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher The American Society for Pharmacology and Experimental Therapeutics
record_format MEDLINE/PubMed
spelling pubmed-72503652020-06-05 Hepatic Transcript Profiles of Cytochrome P450 Genes Predict Sex Differences in Drug Metabolism Fuscoe, James C. Vijay, Vikrant Hanig, Joseph P. Han, Tao Ren, Lijun Greenhaw, James J. Beger, Richard D. Pence, Lisa M. Shi, Qiang Drug Metab Dispos Articles Safety assessments of new drug candidates are an important part of the drug development and approval process. Often, possible sex-associated susceptibilities are not adequately addressed, and better assessment tools are needed. We hypothesized that hepatic transcript profiles of cytochrome P450 (P450) enzymes can be used to predict sex-associated differences in drug metabolism and possible adverse events. Comprehensive hepatic transcript profiles were generated for F344 rats of both sexes at nine ages, from 2 weeks (preweaning) to 104 weeks (elderly). Large differences in the transcript profiles of 29 drug metabolizing enzymes and transporters were found between adult males and females (8–52 weeks). Using the PharmaPendium data base, 41 drugs were found to be metabolized by one or two P450 enzymes encoded by sexually dimorphic mRNAs and thus were candidates for evaluation of possible sexually dimorphic metabolism and/or toxicities. Suspension cultures of primary hepatocytes from three male and three female adult rats (10–13 weeks old) were used to evaluate the metabolism of 11 drugs predicted to have sexually dimorphic metabolism. The pharmacokinetics of the drug or its metabolite was analyzed by liquid chromatography/tandem mass spectrometry using multiple reaction monitoring. Of those drugs with adequate metabolism, the predicted significant sex-different metabolism was found for six of seven drugs, with half-lives 37%–400% longer in female hepatocytes than in male hepatocytes. Thus, in this rat model, transcript profiles may allow identification of potential sex-related differences in drug metabolism. SIGNIFICANCE STATEMENT: The present study showed that sex-different expression of genes coding for drug metabolizing enzymes, specifically cytochrome P450s, could be used to predict sex-different drug metabolism and, thus, provide a new tool for protecting susceptible subpopulations from possible adverse drug events. The American Society for Pharmacology and Experimental Therapeutics 2020-06 2020-06 /pmc/articles/PMC7250365/ /pubmed/32193355 http://dx.doi.org/10.1124/dmd.119.089367 Text en U.S. Government work not protected by U.S. copyright
spellingShingle Articles
Fuscoe, James C.
Vijay, Vikrant
Hanig, Joseph P.
Han, Tao
Ren, Lijun
Greenhaw, James J.
Beger, Richard D.
Pence, Lisa M.
Shi, Qiang
Hepatic Transcript Profiles of Cytochrome P450 Genes Predict Sex Differences in Drug Metabolism
title Hepatic Transcript Profiles of Cytochrome P450 Genes Predict Sex Differences in Drug Metabolism
title_full Hepatic Transcript Profiles of Cytochrome P450 Genes Predict Sex Differences in Drug Metabolism
title_fullStr Hepatic Transcript Profiles of Cytochrome P450 Genes Predict Sex Differences in Drug Metabolism
title_full_unstemmed Hepatic Transcript Profiles of Cytochrome P450 Genes Predict Sex Differences in Drug Metabolism
title_short Hepatic Transcript Profiles of Cytochrome P450 Genes Predict Sex Differences in Drug Metabolism
title_sort hepatic transcript profiles of cytochrome p450 genes predict sex differences in drug metabolism
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7250365/
https://www.ncbi.nlm.nih.gov/pubmed/32193355
http://dx.doi.org/10.1124/dmd.119.089367
work_keys_str_mv AT fuscoejamesc hepatictranscriptprofilesofcytochromep450genespredictsexdifferencesindrugmetabolism
AT vijayvikrant hepatictranscriptprofilesofcytochromep450genespredictsexdifferencesindrugmetabolism
AT hanigjosephp hepatictranscriptprofilesofcytochromep450genespredictsexdifferencesindrugmetabolism
AT hantao hepatictranscriptprofilesofcytochromep450genespredictsexdifferencesindrugmetabolism
AT renlijun hepatictranscriptprofilesofcytochromep450genespredictsexdifferencesindrugmetabolism
AT greenhawjamesj hepatictranscriptprofilesofcytochromep450genespredictsexdifferencesindrugmetabolism
AT begerrichardd hepatictranscriptprofilesofcytochromep450genespredictsexdifferencesindrugmetabolism
AT pencelisam hepatictranscriptprofilesofcytochromep450genespredictsexdifferencesindrugmetabolism
AT shiqiang hepatictranscriptprofilesofcytochromep450genespredictsexdifferencesindrugmetabolism