Cargando…
Hepatic Transcript Profiles of Cytochrome P450 Genes Predict Sex Differences in Drug Metabolism
Safety assessments of new drug candidates are an important part of the drug development and approval process. Often, possible sex-associated susceptibilities are not adequately addressed, and better assessment tools are needed. We hypothesized that hepatic transcript profiles of cytochrome P450 (P45...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The American Society for Pharmacology and Experimental Therapeutics
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7250365/ https://www.ncbi.nlm.nih.gov/pubmed/32193355 http://dx.doi.org/10.1124/dmd.119.089367 |
_version_ | 1783538750051057664 |
---|---|
author | Fuscoe, James C. Vijay, Vikrant Hanig, Joseph P. Han, Tao Ren, Lijun Greenhaw, James J. Beger, Richard D. Pence, Lisa M. Shi, Qiang |
author_facet | Fuscoe, James C. Vijay, Vikrant Hanig, Joseph P. Han, Tao Ren, Lijun Greenhaw, James J. Beger, Richard D. Pence, Lisa M. Shi, Qiang |
author_sort | Fuscoe, James C. |
collection | PubMed |
description | Safety assessments of new drug candidates are an important part of the drug development and approval process. Often, possible sex-associated susceptibilities are not adequately addressed, and better assessment tools are needed. We hypothesized that hepatic transcript profiles of cytochrome P450 (P450) enzymes can be used to predict sex-associated differences in drug metabolism and possible adverse events. Comprehensive hepatic transcript profiles were generated for F344 rats of both sexes at nine ages, from 2 weeks (preweaning) to 104 weeks (elderly). Large differences in the transcript profiles of 29 drug metabolizing enzymes and transporters were found between adult males and females (8–52 weeks). Using the PharmaPendium data base, 41 drugs were found to be metabolized by one or two P450 enzymes encoded by sexually dimorphic mRNAs and thus were candidates for evaluation of possible sexually dimorphic metabolism and/or toxicities. Suspension cultures of primary hepatocytes from three male and three female adult rats (10–13 weeks old) were used to evaluate the metabolism of 11 drugs predicted to have sexually dimorphic metabolism. The pharmacokinetics of the drug or its metabolite was analyzed by liquid chromatography/tandem mass spectrometry using multiple reaction monitoring. Of those drugs with adequate metabolism, the predicted significant sex-different metabolism was found for six of seven drugs, with half-lives 37%–400% longer in female hepatocytes than in male hepatocytes. Thus, in this rat model, transcript profiles may allow identification of potential sex-related differences in drug metabolism. SIGNIFICANCE STATEMENT: The present study showed that sex-different expression of genes coding for drug metabolizing enzymes, specifically cytochrome P450s, could be used to predict sex-different drug metabolism and, thus, provide a new tool for protecting susceptible subpopulations from possible adverse drug events. |
format | Online Article Text |
id | pubmed-7250365 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | The American Society for Pharmacology and Experimental Therapeutics |
record_format | MEDLINE/PubMed |
spelling | pubmed-72503652020-06-05 Hepatic Transcript Profiles of Cytochrome P450 Genes Predict Sex Differences in Drug Metabolism Fuscoe, James C. Vijay, Vikrant Hanig, Joseph P. Han, Tao Ren, Lijun Greenhaw, James J. Beger, Richard D. Pence, Lisa M. Shi, Qiang Drug Metab Dispos Articles Safety assessments of new drug candidates are an important part of the drug development and approval process. Often, possible sex-associated susceptibilities are not adequately addressed, and better assessment tools are needed. We hypothesized that hepatic transcript profiles of cytochrome P450 (P450) enzymes can be used to predict sex-associated differences in drug metabolism and possible adverse events. Comprehensive hepatic transcript profiles were generated for F344 rats of both sexes at nine ages, from 2 weeks (preweaning) to 104 weeks (elderly). Large differences in the transcript profiles of 29 drug metabolizing enzymes and transporters were found between adult males and females (8–52 weeks). Using the PharmaPendium data base, 41 drugs were found to be metabolized by one or two P450 enzymes encoded by sexually dimorphic mRNAs and thus were candidates for evaluation of possible sexually dimorphic metabolism and/or toxicities. Suspension cultures of primary hepatocytes from three male and three female adult rats (10–13 weeks old) were used to evaluate the metabolism of 11 drugs predicted to have sexually dimorphic metabolism. The pharmacokinetics of the drug or its metabolite was analyzed by liquid chromatography/tandem mass spectrometry using multiple reaction monitoring. Of those drugs with adequate metabolism, the predicted significant sex-different metabolism was found for six of seven drugs, with half-lives 37%–400% longer in female hepatocytes than in male hepatocytes. Thus, in this rat model, transcript profiles may allow identification of potential sex-related differences in drug metabolism. SIGNIFICANCE STATEMENT: The present study showed that sex-different expression of genes coding for drug metabolizing enzymes, specifically cytochrome P450s, could be used to predict sex-different drug metabolism and, thus, provide a new tool for protecting susceptible subpopulations from possible adverse drug events. The American Society for Pharmacology and Experimental Therapeutics 2020-06 2020-06 /pmc/articles/PMC7250365/ /pubmed/32193355 http://dx.doi.org/10.1124/dmd.119.089367 Text en U.S. Government work not protected by U.S. copyright |
spellingShingle | Articles Fuscoe, James C. Vijay, Vikrant Hanig, Joseph P. Han, Tao Ren, Lijun Greenhaw, James J. Beger, Richard D. Pence, Lisa M. Shi, Qiang Hepatic Transcript Profiles of Cytochrome P450 Genes Predict Sex Differences in Drug Metabolism |
title | Hepatic Transcript Profiles of Cytochrome P450 Genes Predict Sex Differences in Drug Metabolism |
title_full | Hepatic Transcript Profiles of Cytochrome P450 Genes Predict Sex Differences in Drug Metabolism |
title_fullStr | Hepatic Transcript Profiles of Cytochrome P450 Genes Predict Sex Differences in Drug Metabolism |
title_full_unstemmed | Hepatic Transcript Profiles of Cytochrome P450 Genes Predict Sex Differences in Drug Metabolism |
title_short | Hepatic Transcript Profiles of Cytochrome P450 Genes Predict Sex Differences in Drug Metabolism |
title_sort | hepatic transcript profiles of cytochrome p450 genes predict sex differences in drug metabolism |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7250365/ https://www.ncbi.nlm.nih.gov/pubmed/32193355 http://dx.doi.org/10.1124/dmd.119.089367 |
work_keys_str_mv | AT fuscoejamesc hepatictranscriptprofilesofcytochromep450genespredictsexdifferencesindrugmetabolism AT vijayvikrant hepatictranscriptprofilesofcytochromep450genespredictsexdifferencesindrugmetabolism AT hanigjosephp hepatictranscriptprofilesofcytochromep450genespredictsexdifferencesindrugmetabolism AT hantao hepatictranscriptprofilesofcytochromep450genespredictsexdifferencesindrugmetabolism AT renlijun hepatictranscriptprofilesofcytochromep450genespredictsexdifferencesindrugmetabolism AT greenhawjamesj hepatictranscriptprofilesofcytochromep450genespredictsexdifferencesindrugmetabolism AT begerrichardd hepatictranscriptprofilesofcytochromep450genespredictsexdifferencesindrugmetabolism AT pencelisam hepatictranscriptprofilesofcytochromep450genespredictsexdifferencesindrugmetabolism AT shiqiang hepatictranscriptprofilesofcytochromep450genespredictsexdifferencesindrugmetabolism |