Cargando…
Predicting miRNA-based disease-disease relationships through network diffusion on multi-omics biological data
With critical roles in regulating gene expression, miRNAs are strongly implicated in the pathophysiology of many complex diseases. Experimental methods to determine disease related miRNAs are time consuming and costly. Computationally predicting miRNA-disease associations has potential applications...
Autores principales: | Sumathipala, Marissa, Weiss, Scott T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7251138/ https://www.ncbi.nlm.nih.gov/pubmed/32457435 http://dx.doi.org/10.1038/s41598-020-65633-6 |
Ejemplares similares
-
Network Diffusion Approach to Predict LncRNA Disease Associations Using Multi-Type Biological Networks: LION
por: Sumathipala, Marissa, et al.
Publicado: (2019) -
Multi-Omics Identifies Circulating miRNA and Protein Biomarkers for Facioscapulohumeral Dystrophy
por: Heier, Christopher R., et al.
Publicado: (2020) -
Predicting miRNA-disease association through combining miRNA function and network topological similarities based on MINE
por: Cao, Buwen, et al.
Publicado: (2022) -
Multi-omic network signatures of disease
por: Gibbs, David L., et al.
Publicado: (2014) -
IMOTA: an interactive multi-omics tissue atlas for the analysis of human miRNA–target interactions
por: Palmieri, Valeria, et al.
Publicado: (2018)