Cargando…
Dual Transcriptomic and Molecular Machine Learning Predicts all Major Clinical Forms of Drug Cardiotoxicity
Computational methods can increase productivity of drug discovery pipelines, through overcoming challenges such as cardiotoxicity identification. We demonstrate prediction and preservation of cardiotoxic relationships for six drug-induced cardiotoxicity types using a machine learning approach on a l...
Autores principales: | Mamoshina, Polina, Bueno-Orovio, Alfonso, Rodriguez, Blanca |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7253645/ https://www.ncbi.nlm.nih.gov/pubmed/32508633 http://dx.doi.org/10.3389/fphar.2020.00639 |
Ejemplares similares
-
Toward a broader view of mechanisms of drug cardiotoxicity
por: Mamoshina, Polina, et al.
Publicado: (2021) -
Blinded In Silico Drug Trial Reveals the Minimum Set of Ion Channels for Torsades de Pointes Risk Assessment
por: Zhou, Xin, et al.
Publicado: (2020) -
Machine Learning on Human Muscle Transcriptomic Data for Biomarker Discovery and Tissue-Specific Drug Target Identification
por: Mamoshina, Polina, et al.
Publicado: (2018) -
Ligand-based prediction of hERG-mediated cardiotoxicity based on the integration of different machine learning techniques
por: Delre, Pietro, et al.
Publicado: (2022) -
Human In Silico Drug Trials Demonstrate Higher Accuracy than Animal Models in Predicting Clinical Pro-Arrhythmic Cardiotoxicity
por: Passini, Elisa, et al.
Publicado: (2017)