Cargando…
Single-molecule transport kinetics of a glutamate transporter homolog shows static disorder
Kinetic properties of membrane transporters are typically poorly defined because high-resolution functional assays analogous to single-channel recordings are lacking. Here, we measure single-molecule transport kinetics of a glutamate transporter homolog from Pyrococcus horikoshii, Glt(Ph), using flu...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7259943/ https://www.ncbi.nlm.nih.gov/pubmed/32523985 http://dx.doi.org/10.1126/sciadv.aaz1949 |
Sumario: | Kinetic properties of membrane transporters are typically poorly defined because high-resolution functional assays analogous to single-channel recordings are lacking. Here, we measure single-molecule transport kinetics of a glutamate transporter homolog from Pyrococcus horikoshii, Glt(Ph), using fluorescently labeled periplasmic amino acid binding protein as a fluorescence resonance energy transfer–based sensor. We show that individual transporters can function at rates varying by at least two orders of magnitude that persist for multiple turnovers. A gain-of-function mutant shows increased population of the fast-acting transporters, leading to a 10-fold increase in the mean transport rate. These findings, which are broadly consistent with earlier single-molecule measurements of Glt(Ph) conformational dynamics, suggest that Glt(Ph) transport is defined by kinetically distinct populations that exhibit long-lasting “molecular memory.” |
---|