Cargando…
Structural insight into the electron transfer pathway of a self-sufficient P450 monooxygenase
Cytochrome P450 monooxygenases are versatile heme-thiolate enzymes that catalyze a wide range of reactions. Self-sufficient cytochrome P450 enzymes contain the redox partners in a single polypeptide chain. Here, we present the crystal structure of full-length CYP116B46, a self-sufficient P450. The c...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7260179/ https://www.ncbi.nlm.nih.gov/pubmed/32472090 http://dx.doi.org/10.1038/s41467-020-16500-5 |
Sumario: | Cytochrome P450 monooxygenases are versatile heme-thiolate enzymes that catalyze a wide range of reactions. Self-sufficient cytochrome P450 enzymes contain the redox partners in a single polypeptide chain. Here, we present the crystal structure of full-length CYP116B46, a self-sufficient P450. The continuous polypeptide chain comprises three functional domains, which align well with the direction of electrons traveling from FMN to the heme through the [2Fe-2S] cluster. FMN and the [2Fe-2S] cluster are positioned closely, which facilitates efficient electron shuttling. The edge-to-edge straight-line distance between the [2Fe-2S] cluster and heme is approx. 25.3 Å. The role of several residues located between the [2Fe-2S] cluster and heme in the catalytic reaction is probed in mutagenesis experiments. These findings not only provide insights into the intramolecular electron transfer of self-sufficient P450s, but are also of interest for biotechnological applications of self-sufficient P450s. |
---|