Cargando…
ISCU interacts with NFU1, and ISCU[4Fe-4S] transfers its Fe-S cluster to NFU1 leading to the production of holo-NFU1
NFU1 is a late-acting factor in the biogenesis of human mitochondrial iron-sulfur proteins. Mutations in NFU1 are associated with genetic diseases such as multiple mitochondrial dysfunctions syndrome 1 (MMDS1) that involve defects in mitochondrial [4Fe-4S] proteins. We present results from NMR spect...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7261492/ https://www.ncbi.nlm.nih.gov/pubmed/32151725 http://dx.doi.org/10.1016/j.jsb.2020.107491 |
Sumario: | NFU1 is a late-acting factor in the biogenesis of human mitochondrial iron-sulfur proteins. Mutations in NFU1 are associated with genetic diseases such as multiple mitochondrial dysfunctions syndrome 1 (MMDS1) that involve defects in mitochondrial [4Fe-4S] proteins. We present results from NMR spectroscopy, small angle X-ray scattering, size exclusion chromatography, and isothermal titration calorimetry showing that the structured conformer of human ISCU binds human NFU1. The dissociation constant determined by ITC is K(d) = 1.1 ± 0.2 μM. NMR and SAXS studies led to a structural model for the complex in which the cluster binding region of ISCU interacts with two α-helices in the C-terminal domain of NFU1. In vitro experiments demonstrate that ISCU[4Fe-4S] transfers its Fe-S cluster to apo-NFU1, in the absence of a chaperone, leading to the assembly of holo-NFU1. By contrast, the cluster of ISCU[2Fe-2S] remains bound to ISCU in the presence of apo-NFU1. |
---|