Cargando…
A modular framework for multiscale, multicellular, spatiotemporal modeling of acute primary viral infection and immune response in epithelial tissues and its application to drug therapy timing and effectiveness: A multiscale model of viral infection in epithelial tissues
Simulations of tissue-specific effects of primary acute viral infections like COVID-19 are essential for understanding disease outcomes and optimizing therapies. Such simulations need to support continuous updating in response to rapid advances in understanding of infection mechanisms, and parallel...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7263495/ https://www.ncbi.nlm.nih.gov/pubmed/32511367 http://dx.doi.org/10.1101/2020.04.27.064139 |
_version_ | 1783540804625629184 |
---|---|
author | Sego, T.J. Aponte-Serrano, Josua O. Gianlupi, Juliano Ferrari Heaps, Samuel R. Breithaupt, Kira Brusch, Lutz Crawshaw, Jessica Osborne, James M. Quardokus, Ellen M. Plemper, Richard K. Glazier, James A. |
author_facet | Sego, T.J. Aponte-Serrano, Josua O. Gianlupi, Juliano Ferrari Heaps, Samuel R. Breithaupt, Kira Brusch, Lutz Crawshaw, Jessica Osborne, James M. Quardokus, Ellen M. Plemper, Richard K. Glazier, James A. |
author_sort | Sego, T.J. |
collection | PubMed |
description | Simulations of tissue-specific effects of primary acute viral infections like COVID-19 are essential for understanding disease outcomes and optimizing therapies. Such simulations need to support continuous updating in response to rapid advances in understanding of infection mechanisms, and parallel development of components by multiple groups. We present an open-source platform for multiscale spatiotemporal simulation of an epithelial tissue, viral infection, cellular immune response and tissue damage, specifically designed to be modular and extensible to support continuous updating and parallel development. The base simulation of a simplified patch of epithelial tissue and immune response exhibits distinct patterns of infection dynamics from widespread infection, to recurrence, to clearance. Slower viral internalization and faster immune-cell recruitment slow infection and promote containment. Because antiviral drugs can have side effects and show reduced clinical effectiveness when given later during infection, we studied the effects on progression of treatment potency and time-of-first treatment after infection. In simulations, even a low potency therapy with a drug which reduces the replication rate of viral RNA greatly decreases the total tissue damage and virus burden when given near the beginning of infection. Many combinations of dosage and treatment time lead to stochastic outcomes, with some simulation replicas showing clearance or control (treatment success), while others show rapid infection of all epithelial cells (treatment failure). Thus, while a high potency therapy usually is less effective when given later, treatments at late times are occasionally effective. We illustrate how to extend the platform to model specific virus types (e.g., hepatitis C) and add additional cellular mechanisms (tissue recovery and variable cell susceptibility to infection), using our software modules and publicly-available software repository. |
format | Online Article Text |
id | pubmed-7263495 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Cold Spring Harbor Laboratory |
record_format | MEDLINE/PubMed |
spelling | pubmed-72634952020-06-07 A modular framework for multiscale, multicellular, spatiotemporal modeling of acute primary viral infection and immune response in epithelial tissues and its application to drug therapy timing and effectiveness: A multiscale model of viral infection in epithelial tissues Sego, T.J. Aponte-Serrano, Josua O. Gianlupi, Juliano Ferrari Heaps, Samuel R. Breithaupt, Kira Brusch, Lutz Crawshaw, Jessica Osborne, James M. Quardokus, Ellen M. Plemper, Richard K. Glazier, James A. bioRxiv Article Simulations of tissue-specific effects of primary acute viral infections like COVID-19 are essential for understanding disease outcomes and optimizing therapies. Such simulations need to support continuous updating in response to rapid advances in understanding of infection mechanisms, and parallel development of components by multiple groups. We present an open-source platform for multiscale spatiotemporal simulation of an epithelial tissue, viral infection, cellular immune response and tissue damage, specifically designed to be modular and extensible to support continuous updating and parallel development. The base simulation of a simplified patch of epithelial tissue and immune response exhibits distinct patterns of infection dynamics from widespread infection, to recurrence, to clearance. Slower viral internalization and faster immune-cell recruitment slow infection and promote containment. Because antiviral drugs can have side effects and show reduced clinical effectiveness when given later during infection, we studied the effects on progression of treatment potency and time-of-first treatment after infection. In simulations, even a low potency therapy with a drug which reduces the replication rate of viral RNA greatly decreases the total tissue damage and virus burden when given near the beginning of infection. Many combinations of dosage and treatment time lead to stochastic outcomes, with some simulation replicas showing clearance or control (treatment success), while others show rapid infection of all epithelial cells (treatment failure). Thus, while a high potency therapy usually is less effective when given later, treatments at late times are occasionally effective. We illustrate how to extend the platform to model specific virus types (e.g., hepatitis C) and add additional cellular mechanisms (tissue recovery and variable cell susceptibility to infection), using our software modules and publicly-available software repository. Cold Spring Harbor Laboratory 2020-09-26 /pmc/articles/PMC7263495/ /pubmed/32511367 http://dx.doi.org/10.1101/2020.04.27.064139 Text en http://creativecommons.org/licenses/by/4.0/It is made available under a CC-BY 4.0 International license (http://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Sego, T.J. Aponte-Serrano, Josua O. Gianlupi, Juliano Ferrari Heaps, Samuel R. Breithaupt, Kira Brusch, Lutz Crawshaw, Jessica Osborne, James M. Quardokus, Ellen M. Plemper, Richard K. Glazier, James A. A modular framework for multiscale, multicellular, spatiotemporal modeling of acute primary viral infection and immune response in epithelial tissues and its application to drug therapy timing and effectiveness: A multiscale model of viral infection in epithelial tissues |
title | A modular framework for multiscale, multicellular, spatiotemporal modeling of acute primary viral infection and immune response in epithelial tissues and its application to drug therapy timing and effectiveness: A multiscale model of viral infection in epithelial tissues |
title_full | A modular framework for multiscale, multicellular, spatiotemporal modeling of acute primary viral infection and immune response in epithelial tissues and its application to drug therapy timing and effectiveness: A multiscale model of viral infection in epithelial tissues |
title_fullStr | A modular framework for multiscale, multicellular, spatiotemporal modeling of acute primary viral infection and immune response in epithelial tissues and its application to drug therapy timing and effectiveness: A multiscale model of viral infection in epithelial tissues |
title_full_unstemmed | A modular framework for multiscale, multicellular, spatiotemporal modeling of acute primary viral infection and immune response in epithelial tissues and its application to drug therapy timing and effectiveness: A multiscale model of viral infection in epithelial tissues |
title_short | A modular framework for multiscale, multicellular, spatiotemporal modeling of acute primary viral infection and immune response in epithelial tissues and its application to drug therapy timing and effectiveness: A multiscale model of viral infection in epithelial tissues |
title_sort | modular framework for multiscale, multicellular, spatiotemporal modeling of acute primary viral infection and immune response in epithelial tissues and its application to drug therapy timing and effectiveness: a multiscale model of viral infection in epithelial tissues |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7263495/ https://www.ncbi.nlm.nih.gov/pubmed/32511367 http://dx.doi.org/10.1101/2020.04.27.064139 |
work_keys_str_mv | AT segotj amodularframeworkformultiscalemulticellularspatiotemporalmodelingofacuteprimaryviralinfectionandimmuneresponseinepithelialtissuesanditsapplicationtodrugtherapytimingandeffectivenessamultiscalemodelofviralinfectioninepithelialtissues AT aponteserranojosuao amodularframeworkformultiscalemulticellularspatiotemporalmodelingofacuteprimaryviralinfectionandimmuneresponseinepithelialtissuesanditsapplicationtodrugtherapytimingandeffectivenessamultiscalemodelofviralinfectioninepithelialtissues AT gianlupijulianoferrari amodularframeworkformultiscalemulticellularspatiotemporalmodelingofacuteprimaryviralinfectionandimmuneresponseinepithelialtissuesanditsapplicationtodrugtherapytimingandeffectivenessamultiscalemodelofviralinfectioninepithelialtissues AT heapssamuelr amodularframeworkformultiscalemulticellularspatiotemporalmodelingofacuteprimaryviralinfectionandimmuneresponseinepithelialtissuesanditsapplicationtodrugtherapytimingandeffectivenessamultiscalemodelofviralinfectioninepithelialtissues AT breithauptkira amodularframeworkformultiscalemulticellularspatiotemporalmodelingofacuteprimaryviralinfectionandimmuneresponseinepithelialtissuesanditsapplicationtodrugtherapytimingandeffectivenessamultiscalemodelofviralinfectioninepithelialtissues AT bruschlutz amodularframeworkformultiscalemulticellularspatiotemporalmodelingofacuteprimaryviralinfectionandimmuneresponseinepithelialtissuesanditsapplicationtodrugtherapytimingandeffectivenessamultiscalemodelofviralinfectioninepithelialtissues AT crawshawjessica amodularframeworkformultiscalemulticellularspatiotemporalmodelingofacuteprimaryviralinfectionandimmuneresponseinepithelialtissuesanditsapplicationtodrugtherapytimingandeffectivenessamultiscalemodelofviralinfectioninepithelialtissues AT osbornejamesm amodularframeworkformultiscalemulticellularspatiotemporalmodelingofacuteprimaryviralinfectionandimmuneresponseinepithelialtissuesanditsapplicationtodrugtherapytimingandeffectivenessamultiscalemodelofviralinfectioninepithelialtissues AT quardokusellenm amodularframeworkformultiscalemulticellularspatiotemporalmodelingofacuteprimaryviralinfectionandimmuneresponseinepithelialtissuesanditsapplicationtodrugtherapytimingandeffectivenessamultiscalemodelofviralinfectioninepithelialtissues AT plemperrichardk amodularframeworkformultiscalemulticellularspatiotemporalmodelingofacuteprimaryviralinfectionandimmuneresponseinepithelialtissuesanditsapplicationtodrugtherapytimingandeffectivenessamultiscalemodelofviralinfectioninepithelialtissues AT glazierjamesa amodularframeworkformultiscalemulticellularspatiotemporalmodelingofacuteprimaryviralinfectionandimmuneresponseinepithelialtissuesanditsapplicationtodrugtherapytimingandeffectivenessamultiscalemodelofviralinfectioninepithelialtissues AT segotj modularframeworkformultiscalemulticellularspatiotemporalmodelingofacuteprimaryviralinfectionandimmuneresponseinepithelialtissuesanditsapplicationtodrugtherapytimingandeffectivenessamultiscalemodelofviralinfectioninepithelialtissues AT aponteserranojosuao modularframeworkformultiscalemulticellularspatiotemporalmodelingofacuteprimaryviralinfectionandimmuneresponseinepithelialtissuesanditsapplicationtodrugtherapytimingandeffectivenessamultiscalemodelofviralinfectioninepithelialtissues AT gianlupijulianoferrari modularframeworkformultiscalemulticellularspatiotemporalmodelingofacuteprimaryviralinfectionandimmuneresponseinepithelialtissuesanditsapplicationtodrugtherapytimingandeffectivenessamultiscalemodelofviralinfectioninepithelialtissues AT heapssamuelr modularframeworkformultiscalemulticellularspatiotemporalmodelingofacuteprimaryviralinfectionandimmuneresponseinepithelialtissuesanditsapplicationtodrugtherapytimingandeffectivenessamultiscalemodelofviralinfectioninepithelialtissues AT breithauptkira modularframeworkformultiscalemulticellularspatiotemporalmodelingofacuteprimaryviralinfectionandimmuneresponseinepithelialtissuesanditsapplicationtodrugtherapytimingandeffectivenessamultiscalemodelofviralinfectioninepithelialtissues AT bruschlutz modularframeworkformultiscalemulticellularspatiotemporalmodelingofacuteprimaryviralinfectionandimmuneresponseinepithelialtissuesanditsapplicationtodrugtherapytimingandeffectivenessamultiscalemodelofviralinfectioninepithelialtissues AT crawshawjessica modularframeworkformultiscalemulticellularspatiotemporalmodelingofacuteprimaryviralinfectionandimmuneresponseinepithelialtissuesanditsapplicationtodrugtherapytimingandeffectivenessamultiscalemodelofviralinfectioninepithelialtissues AT osbornejamesm modularframeworkformultiscalemulticellularspatiotemporalmodelingofacuteprimaryviralinfectionandimmuneresponseinepithelialtissuesanditsapplicationtodrugtherapytimingandeffectivenessamultiscalemodelofviralinfectioninepithelialtissues AT quardokusellenm modularframeworkformultiscalemulticellularspatiotemporalmodelingofacuteprimaryviralinfectionandimmuneresponseinepithelialtissuesanditsapplicationtodrugtherapytimingandeffectivenessamultiscalemodelofviralinfectioninepithelialtissues AT plemperrichardk modularframeworkformultiscalemulticellularspatiotemporalmodelingofacuteprimaryviralinfectionandimmuneresponseinepithelialtissuesanditsapplicationtodrugtherapytimingandeffectivenessamultiscalemodelofviralinfectioninepithelialtissues AT glazierjamesa modularframeworkformultiscalemulticellularspatiotemporalmodelingofacuteprimaryviralinfectionandimmuneresponseinepithelialtissuesanditsapplicationtodrugtherapytimingandeffectivenessamultiscalemodelofviralinfectioninepithelialtissues |