Cargando…

A modular framework for multiscale, multicellular, spatiotemporal modeling of acute primary viral infection and immune response in epithelial tissues and its application to drug therapy timing and effectiveness: A multiscale model of viral infection in epithelial tissues

Simulations of tissue-specific effects of primary acute viral infections like COVID-19 are essential for understanding disease outcomes and optimizing therapies. Such simulations need to support continuous updating in response to rapid advances in understanding of infection mechanisms, and parallel...

Descripción completa

Detalles Bibliográficos
Autores principales: Sego, T.J., Aponte-Serrano, Josua O., Gianlupi, Juliano Ferrari, Heaps, Samuel R., Breithaupt, Kira, Brusch, Lutz, Crawshaw, Jessica, Osborne, James M., Quardokus, Ellen M., Plemper, Richard K., Glazier, James A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7263495/
https://www.ncbi.nlm.nih.gov/pubmed/32511367
http://dx.doi.org/10.1101/2020.04.27.064139
_version_ 1783540804625629184
author Sego, T.J.
Aponte-Serrano, Josua O.
Gianlupi, Juliano Ferrari
Heaps, Samuel R.
Breithaupt, Kira
Brusch, Lutz
Crawshaw, Jessica
Osborne, James M.
Quardokus, Ellen M.
Plemper, Richard K.
Glazier, James A.
author_facet Sego, T.J.
Aponte-Serrano, Josua O.
Gianlupi, Juliano Ferrari
Heaps, Samuel R.
Breithaupt, Kira
Brusch, Lutz
Crawshaw, Jessica
Osborne, James M.
Quardokus, Ellen M.
Plemper, Richard K.
Glazier, James A.
author_sort Sego, T.J.
collection PubMed
description Simulations of tissue-specific effects of primary acute viral infections like COVID-19 are essential for understanding disease outcomes and optimizing therapies. Such simulations need to support continuous updating in response to rapid advances in understanding of infection mechanisms, and parallel development of components by multiple groups. We present an open-source platform for multiscale spatiotemporal simulation of an epithelial tissue, viral infection, cellular immune response and tissue damage, specifically designed to be modular and extensible to support continuous updating and parallel development. The base simulation of a simplified patch of epithelial tissue and immune response exhibits distinct patterns of infection dynamics from widespread infection, to recurrence, to clearance. Slower viral internalization and faster immune-cell recruitment slow infection and promote containment. Because antiviral drugs can have side effects and show reduced clinical effectiveness when given later during infection, we studied the effects on progression of treatment potency and time-of-first treatment after infection. In simulations, even a low potency therapy with a drug which reduces the replication rate of viral RNA greatly decreases the total tissue damage and virus burden when given near the beginning of infection. Many combinations of dosage and treatment time lead to stochastic outcomes, with some simulation replicas showing clearance or control (treatment success), while others show rapid infection of all epithelial cells (treatment failure). Thus, while a high potency therapy usually is less effective when given later, treatments at late times are occasionally effective. We illustrate how to extend the platform to model specific virus types (e.g., hepatitis C) and add additional cellular mechanisms (tissue recovery and variable cell susceptibility to infection), using our software modules and publicly-available software repository.
format Online
Article
Text
id pubmed-7263495
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Cold Spring Harbor Laboratory
record_format MEDLINE/PubMed
spelling pubmed-72634952020-06-07 A modular framework for multiscale, multicellular, spatiotemporal modeling of acute primary viral infection and immune response in epithelial tissues and its application to drug therapy timing and effectiveness: A multiscale model of viral infection in epithelial tissues Sego, T.J. Aponte-Serrano, Josua O. Gianlupi, Juliano Ferrari Heaps, Samuel R. Breithaupt, Kira Brusch, Lutz Crawshaw, Jessica Osborne, James M. Quardokus, Ellen M. Plemper, Richard K. Glazier, James A. bioRxiv Article Simulations of tissue-specific effects of primary acute viral infections like COVID-19 are essential for understanding disease outcomes and optimizing therapies. Such simulations need to support continuous updating in response to rapid advances in understanding of infection mechanisms, and parallel development of components by multiple groups. We present an open-source platform for multiscale spatiotemporal simulation of an epithelial tissue, viral infection, cellular immune response and tissue damage, specifically designed to be modular and extensible to support continuous updating and parallel development. The base simulation of a simplified patch of epithelial tissue and immune response exhibits distinct patterns of infection dynamics from widespread infection, to recurrence, to clearance. Slower viral internalization and faster immune-cell recruitment slow infection and promote containment. Because antiviral drugs can have side effects and show reduced clinical effectiveness when given later during infection, we studied the effects on progression of treatment potency and time-of-first treatment after infection. In simulations, even a low potency therapy with a drug which reduces the replication rate of viral RNA greatly decreases the total tissue damage and virus burden when given near the beginning of infection. Many combinations of dosage and treatment time lead to stochastic outcomes, with some simulation replicas showing clearance or control (treatment success), while others show rapid infection of all epithelial cells (treatment failure). Thus, while a high potency therapy usually is less effective when given later, treatments at late times are occasionally effective. We illustrate how to extend the platform to model specific virus types (e.g., hepatitis C) and add additional cellular mechanisms (tissue recovery and variable cell susceptibility to infection), using our software modules and publicly-available software repository. Cold Spring Harbor Laboratory 2020-09-26 /pmc/articles/PMC7263495/ /pubmed/32511367 http://dx.doi.org/10.1101/2020.04.27.064139 Text en http://creativecommons.org/licenses/by/4.0/It is made available under a CC-BY 4.0 International license (http://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Sego, T.J.
Aponte-Serrano, Josua O.
Gianlupi, Juliano Ferrari
Heaps, Samuel R.
Breithaupt, Kira
Brusch, Lutz
Crawshaw, Jessica
Osborne, James M.
Quardokus, Ellen M.
Plemper, Richard K.
Glazier, James A.
A modular framework for multiscale, multicellular, spatiotemporal modeling of acute primary viral infection and immune response in epithelial tissues and its application to drug therapy timing and effectiveness: A multiscale model of viral infection in epithelial tissues
title A modular framework for multiscale, multicellular, spatiotemporal modeling of acute primary viral infection and immune response in epithelial tissues and its application to drug therapy timing and effectiveness: A multiscale model of viral infection in epithelial tissues
title_full A modular framework for multiscale, multicellular, spatiotemporal modeling of acute primary viral infection and immune response in epithelial tissues and its application to drug therapy timing and effectiveness: A multiscale model of viral infection in epithelial tissues
title_fullStr A modular framework for multiscale, multicellular, spatiotemporal modeling of acute primary viral infection and immune response in epithelial tissues and its application to drug therapy timing and effectiveness: A multiscale model of viral infection in epithelial tissues
title_full_unstemmed A modular framework for multiscale, multicellular, spatiotemporal modeling of acute primary viral infection and immune response in epithelial tissues and its application to drug therapy timing and effectiveness: A multiscale model of viral infection in epithelial tissues
title_short A modular framework for multiscale, multicellular, spatiotemporal modeling of acute primary viral infection and immune response in epithelial tissues and its application to drug therapy timing and effectiveness: A multiscale model of viral infection in epithelial tissues
title_sort modular framework for multiscale, multicellular, spatiotemporal modeling of acute primary viral infection and immune response in epithelial tissues and its application to drug therapy timing and effectiveness: a multiscale model of viral infection in epithelial tissues
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7263495/
https://www.ncbi.nlm.nih.gov/pubmed/32511367
http://dx.doi.org/10.1101/2020.04.27.064139
work_keys_str_mv AT segotj amodularframeworkformultiscalemulticellularspatiotemporalmodelingofacuteprimaryviralinfectionandimmuneresponseinepithelialtissuesanditsapplicationtodrugtherapytimingandeffectivenessamultiscalemodelofviralinfectioninepithelialtissues
AT aponteserranojosuao amodularframeworkformultiscalemulticellularspatiotemporalmodelingofacuteprimaryviralinfectionandimmuneresponseinepithelialtissuesanditsapplicationtodrugtherapytimingandeffectivenessamultiscalemodelofviralinfectioninepithelialtissues
AT gianlupijulianoferrari amodularframeworkformultiscalemulticellularspatiotemporalmodelingofacuteprimaryviralinfectionandimmuneresponseinepithelialtissuesanditsapplicationtodrugtherapytimingandeffectivenessamultiscalemodelofviralinfectioninepithelialtissues
AT heapssamuelr amodularframeworkformultiscalemulticellularspatiotemporalmodelingofacuteprimaryviralinfectionandimmuneresponseinepithelialtissuesanditsapplicationtodrugtherapytimingandeffectivenessamultiscalemodelofviralinfectioninepithelialtissues
AT breithauptkira amodularframeworkformultiscalemulticellularspatiotemporalmodelingofacuteprimaryviralinfectionandimmuneresponseinepithelialtissuesanditsapplicationtodrugtherapytimingandeffectivenessamultiscalemodelofviralinfectioninepithelialtissues
AT bruschlutz amodularframeworkformultiscalemulticellularspatiotemporalmodelingofacuteprimaryviralinfectionandimmuneresponseinepithelialtissuesanditsapplicationtodrugtherapytimingandeffectivenessamultiscalemodelofviralinfectioninepithelialtissues
AT crawshawjessica amodularframeworkformultiscalemulticellularspatiotemporalmodelingofacuteprimaryviralinfectionandimmuneresponseinepithelialtissuesanditsapplicationtodrugtherapytimingandeffectivenessamultiscalemodelofviralinfectioninepithelialtissues
AT osbornejamesm amodularframeworkformultiscalemulticellularspatiotemporalmodelingofacuteprimaryviralinfectionandimmuneresponseinepithelialtissuesanditsapplicationtodrugtherapytimingandeffectivenessamultiscalemodelofviralinfectioninepithelialtissues
AT quardokusellenm amodularframeworkformultiscalemulticellularspatiotemporalmodelingofacuteprimaryviralinfectionandimmuneresponseinepithelialtissuesanditsapplicationtodrugtherapytimingandeffectivenessamultiscalemodelofviralinfectioninepithelialtissues
AT plemperrichardk amodularframeworkformultiscalemulticellularspatiotemporalmodelingofacuteprimaryviralinfectionandimmuneresponseinepithelialtissuesanditsapplicationtodrugtherapytimingandeffectivenessamultiscalemodelofviralinfectioninepithelialtissues
AT glazierjamesa amodularframeworkformultiscalemulticellularspatiotemporalmodelingofacuteprimaryviralinfectionandimmuneresponseinepithelialtissuesanditsapplicationtodrugtherapytimingandeffectivenessamultiscalemodelofviralinfectioninepithelialtissues
AT segotj modularframeworkformultiscalemulticellularspatiotemporalmodelingofacuteprimaryviralinfectionandimmuneresponseinepithelialtissuesanditsapplicationtodrugtherapytimingandeffectivenessamultiscalemodelofviralinfectioninepithelialtissues
AT aponteserranojosuao modularframeworkformultiscalemulticellularspatiotemporalmodelingofacuteprimaryviralinfectionandimmuneresponseinepithelialtissuesanditsapplicationtodrugtherapytimingandeffectivenessamultiscalemodelofviralinfectioninepithelialtissues
AT gianlupijulianoferrari modularframeworkformultiscalemulticellularspatiotemporalmodelingofacuteprimaryviralinfectionandimmuneresponseinepithelialtissuesanditsapplicationtodrugtherapytimingandeffectivenessamultiscalemodelofviralinfectioninepithelialtissues
AT heapssamuelr modularframeworkformultiscalemulticellularspatiotemporalmodelingofacuteprimaryviralinfectionandimmuneresponseinepithelialtissuesanditsapplicationtodrugtherapytimingandeffectivenessamultiscalemodelofviralinfectioninepithelialtissues
AT breithauptkira modularframeworkformultiscalemulticellularspatiotemporalmodelingofacuteprimaryviralinfectionandimmuneresponseinepithelialtissuesanditsapplicationtodrugtherapytimingandeffectivenessamultiscalemodelofviralinfectioninepithelialtissues
AT bruschlutz modularframeworkformultiscalemulticellularspatiotemporalmodelingofacuteprimaryviralinfectionandimmuneresponseinepithelialtissuesanditsapplicationtodrugtherapytimingandeffectivenessamultiscalemodelofviralinfectioninepithelialtissues
AT crawshawjessica modularframeworkformultiscalemulticellularspatiotemporalmodelingofacuteprimaryviralinfectionandimmuneresponseinepithelialtissuesanditsapplicationtodrugtherapytimingandeffectivenessamultiscalemodelofviralinfectioninepithelialtissues
AT osbornejamesm modularframeworkformultiscalemulticellularspatiotemporalmodelingofacuteprimaryviralinfectionandimmuneresponseinepithelialtissuesanditsapplicationtodrugtherapytimingandeffectivenessamultiscalemodelofviralinfectioninepithelialtissues
AT quardokusellenm modularframeworkformultiscalemulticellularspatiotemporalmodelingofacuteprimaryviralinfectionandimmuneresponseinepithelialtissuesanditsapplicationtodrugtherapytimingandeffectivenessamultiscalemodelofviralinfectioninepithelialtissues
AT plemperrichardk modularframeworkformultiscalemulticellularspatiotemporalmodelingofacuteprimaryviralinfectionandimmuneresponseinepithelialtissuesanditsapplicationtodrugtherapytimingandeffectivenessamultiscalemodelofviralinfectioninepithelialtissues
AT glazierjamesa modularframeworkformultiscalemulticellularspatiotemporalmodelingofacuteprimaryviralinfectionandimmuneresponseinepithelialtissuesanditsapplicationtodrugtherapytimingandeffectivenessamultiscalemodelofviralinfectioninepithelialtissues