Cargando…
Preparation of high drug-loading celastrol nanosuspensions and their anti-breast cancer activities in vitro and in vivo
As one of the main components of Tripterygium wilfordii Hook F, celastrol (CSL) has significant antitumor activity, but its clinical application has been limited by its poor solubility, low oral bioavailability and systemic toxicity. In this study, celastrol nanosuspensions (CSL-NSps) were prepared...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7264310/ https://www.ncbi.nlm.nih.gov/pubmed/32483248 http://dx.doi.org/10.1038/s41598-020-65773-9 |
Sumario: | As one of the main components of Tripterygium wilfordii Hook F, celastrol (CSL) has significant antitumor activity, but its clinical application has been limited by its poor solubility, low oral bioavailability and systemic toxicity. In this study, celastrol nanosuspensions (CSL-NSps) were prepared using an antisolvent precipitation method with poloxamer 188 (P-188) as a stabilizer at a high CSL/P-188 feeding ratio of 8:1. The resultant CSL was spherical in shape with an average particle size of 147.9 nm, a polydispersity index (PDI) of 0.12 and zeta potential of -19.2 mV. The encapsulation efficiency and drug loading content were 98.18% and 86.83%, respectively, and the X-ray diffraction (XRD) pattern showed that CSL existed in an amorphous state in the nanosuspensions. CSL-NSps were quite stable in various physiological media and plasma and were both suitable for oral and intravenous administration. Nanosuspensions greatly enhanced the in vitro dissolution, and the cumulative drug release reached approximately 69.20% within 48 h. In vivo, CSL-NSps (3 mg/kg, i.g.) displayed a significantly enhanced tumor inhibition rate (TIR) in comparison with that of CSL suspension when administered orally (TIR, 50.39%, vs. 41.16%, p < 0.05), similar to that of PTX injection (8 mg/kg, i.v. TIR, 50.88%). CSL-NSps showed even better therapeutic efficacy than PTX injection (TIR, 64.18%, p < 0.01) when intravenously injected. This has demonstrated that, with the help of nanosuspensions, CSL is likely to be an effective and promising antitumor agent in clinic practice for the treatment of breast cancer. |
---|