Cargando…
An evolutionary path to altered cofactor specificity in a metalloenzyme
Almost half of all enzymes utilize a metal cofactor. However, the features that dictate the metal utilized by metalloenzymes are poorly understood, limiting our ability to manipulate these enzymes for industrial and health-associated applications. The ubiquitous iron/manganese superoxide dismutase (...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7264356/ https://www.ncbi.nlm.nih.gov/pubmed/32483131 http://dx.doi.org/10.1038/s41467-020-16478-0 |
_version_ | 1783540956988964864 |
---|---|
author | Barwinska-Sendra, Anna Garcia, Yuritzi M. Sendra, Kacper M. Baslé, Arnaud Mackenzie, Eilidh S. Tarrant, Emma Card, Patrick Tabares, Leandro C. Bicep, Cédric Un, Sun Kehl-Fie, Thomas E. Waldron, Kevin J. |
author_facet | Barwinska-Sendra, Anna Garcia, Yuritzi M. Sendra, Kacper M. Baslé, Arnaud Mackenzie, Eilidh S. Tarrant, Emma Card, Patrick Tabares, Leandro C. Bicep, Cédric Un, Sun Kehl-Fie, Thomas E. Waldron, Kevin J. |
author_sort | Barwinska-Sendra, Anna |
collection | PubMed |
description | Almost half of all enzymes utilize a metal cofactor. However, the features that dictate the metal utilized by metalloenzymes are poorly understood, limiting our ability to manipulate these enzymes for industrial and health-associated applications. The ubiquitous iron/manganese superoxide dismutase (SOD) family exemplifies this deficit, as the specific metal used by any family member cannot be predicted. Biochemical, structural and paramagnetic analysis of two evolutionarily related SODs with different metal specificity produced by the pathogenic bacterium Staphylococcus aureus identifies two positions that control metal specificity. These residues make no direct contacts with the metal-coordinating ligands but control the metal’s redox properties, demonstrating that subtle architectural changes can dramatically alter metal utilization. Introducing these mutations into S. aureus alters the ability of the bacterium to resist superoxide stress when metal starved by the host, revealing that small changes in metal-dependent activity can drive the evolution of metalloenzymes with new cofactor specificity. |
format | Online Article Text |
id | pubmed-7264356 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-72643562020-06-12 An evolutionary path to altered cofactor specificity in a metalloenzyme Barwinska-Sendra, Anna Garcia, Yuritzi M. Sendra, Kacper M. Baslé, Arnaud Mackenzie, Eilidh S. Tarrant, Emma Card, Patrick Tabares, Leandro C. Bicep, Cédric Un, Sun Kehl-Fie, Thomas E. Waldron, Kevin J. Nat Commun Article Almost half of all enzymes utilize a metal cofactor. However, the features that dictate the metal utilized by metalloenzymes are poorly understood, limiting our ability to manipulate these enzymes for industrial and health-associated applications. The ubiquitous iron/manganese superoxide dismutase (SOD) family exemplifies this deficit, as the specific metal used by any family member cannot be predicted. Biochemical, structural and paramagnetic analysis of two evolutionarily related SODs with different metal specificity produced by the pathogenic bacterium Staphylococcus aureus identifies two positions that control metal specificity. These residues make no direct contacts with the metal-coordinating ligands but control the metal’s redox properties, demonstrating that subtle architectural changes can dramatically alter metal utilization. Introducing these mutations into S. aureus alters the ability of the bacterium to resist superoxide stress when metal starved by the host, revealing that small changes in metal-dependent activity can drive the evolution of metalloenzymes with new cofactor specificity. Nature Publishing Group UK 2020-06-01 /pmc/articles/PMC7264356/ /pubmed/32483131 http://dx.doi.org/10.1038/s41467-020-16478-0 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Barwinska-Sendra, Anna Garcia, Yuritzi M. Sendra, Kacper M. Baslé, Arnaud Mackenzie, Eilidh S. Tarrant, Emma Card, Patrick Tabares, Leandro C. Bicep, Cédric Un, Sun Kehl-Fie, Thomas E. Waldron, Kevin J. An evolutionary path to altered cofactor specificity in a metalloenzyme |
title | An evolutionary path to altered cofactor specificity in a metalloenzyme |
title_full | An evolutionary path to altered cofactor specificity in a metalloenzyme |
title_fullStr | An evolutionary path to altered cofactor specificity in a metalloenzyme |
title_full_unstemmed | An evolutionary path to altered cofactor specificity in a metalloenzyme |
title_short | An evolutionary path to altered cofactor specificity in a metalloenzyme |
title_sort | evolutionary path to altered cofactor specificity in a metalloenzyme |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7264356/ https://www.ncbi.nlm.nih.gov/pubmed/32483131 http://dx.doi.org/10.1038/s41467-020-16478-0 |
work_keys_str_mv | AT barwinskasendraanna anevolutionarypathtoalteredcofactorspecificityinametalloenzyme AT garciayuritzim anevolutionarypathtoalteredcofactorspecificityinametalloenzyme AT sendrakacperm anevolutionarypathtoalteredcofactorspecificityinametalloenzyme AT baslearnaud anevolutionarypathtoalteredcofactorspecificityinametalloenzyme AT mackenzieeilidhs anevolutionarypathtoalteredcofactorspecificityinametalloenzyme AT tarrantemma anevolutionarypathtoalteredcofactorspecificityinametalloenzyme AT cardpatrick anevolutionarypathtoalteredcofactorspecificityinametalloenzyme AT tabaresleandroc anevolutionarypathtoalteredcofactorspecificityinametalloenzyme AT bicepcedric anevolutionarypathtoalteredcofactorspecificityinametalloenzyme AT unsun anevolutionarypathtoalteredcofactorspecificityinametalloenzyme AT kehlfiethomase anevolutionarypathtoalteredcofactorspecificityinametalloenzyme AT waldronkevinj anevolutionarypathtoalteredcofactorspecificityinametalloenzyme AT barwinskasendraanna evolutionarypathtoalteredcofactorspecificityinametalloenzyme AT garciayuritzim evolutionarypathtoalteredcofactorspecificityinametalloenzyme AT sendrakacperm evolutionarypathtoalteredcofactorspecificityinametalloenzyme AT baslearnaud evolutionarypathtoalteredcofactorspecificityinametalloenzyme AT mackenzieeilidhs evolutionarypathtoalteredcofactorspecificityinametalloenzyme AT tarrantemma evolutionarypathtoalteredcofactorspecificityinametalloenzyme AT cardpatrick evolutionarypathtoalteredcofactorspecificityinametalloenzyme AT tabaresleandroc evolutionarypathtoalteredcofactorspecificityinametalloenzyme AT bicepcedric evolutionarypathtoalteredcofactorspecificityinametalloenzyme AT unsun evolutionarypathtoalteredcofactorspecificityinametalloenzyme AT kehlfiethomase evolutionarypathtoalteredcofactorspecificityinametalloenzyme AT waldronkevinj evolutionarypathtoalteredcofactorspecificityinametalloenzyme |