Cargando…

An evolutionary path to altered cofactor specificity in a metalloenzyme

Almost half of all enzymes utilize a metal cofactor. However, the features that dictate the metal utilized by metalloenzymes are poorly understood, limiting our ability to manipulate these enzymes for industrial and health-associated applications. The ubiquitous iron/manganese superoxide dismutase (...

Descripción completa

Detalles Bibliográficos
Autores principales: Barwinska-Sendra, Anna, Garcia, Yuritzi M., Sendra, Kacper M., Baslé, Arnaud, Mackenzie, Eilidh S., Tarrant, Emma, Card, Patrick, Tabares, Leandro C., Bicep, Cédric, Un, Sun, Kehl-Fie, Thomas E., Waldron, Kevin J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7264356/
https://www.ncbi.nlm.nih.gov/pubmed/32483131
http://dx.doi.org/10.1038/s41467-020-16478-0
_version_ 1783540956988964864
author Barwinska-Sendra, Anna
Garcia, Yuritzi M.
Sendra, Kacper M.
Baslé, Arnaud
Mackenzie, Eilidh S.
Tarrant, Emma
Card, Patrick
Tabares, Leandro C.
Bicep, Cédric
Un, Sun
Kehl-Fie, Thomas E.
Waldron, Kevin J.
author_facet Barwinska-Sendra, Anna
Garcia, Yuritzi M.
Sendra, Kacper M.
Baslé, Arnaud
Mackenzie, Eilidh S.
Tarrant, Emma
Card, Patrick
Tabares, Leandro C.
Bicep, Cédric
Un, Sun
Kehl-Fie, Thomas E.
Waldron, Kevin J.
author_sort Barwinska-Sendra, Anna
collection PubMed
description Almost half of all enzymes utilize a metal cofactor. However, the features that dictate the metal utilized by metalloenzymes are poorly understood, limiting our ability to manipulate these enzymes for industrial and health-associated applications. The ubiquitous iron/manganese superoxide dismutase (SOD) family exemplifies this deficit, as the specific metal used by any family member cannot be predicted. Biochemical, structural and paramagnetic analysis of two evolutionarily related SODs with different metal specificity produced by the pathogenic bacterium Staphylococcus aureus identifies two positions that control metal specificity. These residues make no direct contacts with the metal-coordinating ligands but control the metal’s redox properties, demonstrating that subtle architectural changes can dramatically alter metal utilization. Introducing these mutations into S. aureus alters the ability of the bacterium to resist superoxide stress when metal starved by the host, revealing that small changes in metal-dependent activity can drive the evolution of metalloenzymes with new cofactor specificity.
format Online
Article
Text
id pubmed-7264356
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-72643562020-06-12 An evolutionary path to altered cofactor specificity in a metalloenzyme Barwinska-Sendra, Anna Garcia, Yuritzi M. Sendra, Kacper M. Baslé, Arnaud Mackenzie, Eilidh S. Tarrant, Emma Card, Patrick Tabares, Leandro C. Bicep, Cédric Un, Sun Kehl-Fie, Thomas E. Waldron, Kevin J. Nat Commun Article Almost half of all enzymes utilize a metal cofactor. However, the features that dictate the metal utilized by metalloenzymes are poorly understood, limiting our ability to manipulate these enzymes for industrial and health-associated applications. The ubiquitous iron/manganese superoxide dismutase (SOD) family exemplifies this deficit, as the specific metal used by any family member cannot be predicted. Biochemical, structural and paramagnetic analysis of two evolutionarily related SODs with different metal specificity produced by the pathogenic bacterium Staphylococcus aureus identifies two positions that control metal specificity. These residues make no direct contacts with the metal-coordinating ligands but control the metal’s redox properties, demonstrating that subtle architectural changes can dramatically alter metal utilization. Introducing these mutations into S. aureus alters the ability of the bacterium to resist superoxide stress when metal starved by the host, revealing that small changes in metal-dependent activity can drive the evolution of metalloenzymes with new cofactor specificity. Nature Publishing Group UK 2020-06-01 /pmc/articles/PMC7264356/ /pubmed/32483131 http://dx.doi.org/10.1038/s41467-020-16478-0 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Barwinska-Sendra, Anna
Garcia, Yuritzi M.
Sendra, Kacper M.
Baslé, Arnaud
Mackenzie, Eilidh S.
Tarrant, Emma
Card, Patrick
Tabares, Leandro C.
Bicep, Cédric
Un, Sun
Kehl-Fie, Thomas E.
Waldron, Kevin J.
An evolutionary path to altered cofactor specificity in a metalloenzyme
title An evolutionary path to altered cofactor specificity in a metalloenzyme
title_full An evolutionary path to altered cofactor specificity in a metalloenzyme
title_fullStr An evolutionary path to altered cofactor specificity in a metalloenzyme
title_full_unstemmed An evolutionary path to altered cofactor specificity in a metalloenzyme
title_short An evolutionary path to altered cofactor specificity in a metalloenzyme
title_sort evolutionary path to altered cofactor specificity in a metalloenzyme
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7264356/
https://www.ncbi.nlm.nih.gov/pubmed/32483131
http://dx.doi.org/10.1038/s41467-020-16478-0
work_keys_str_mv AT barwinskasendraanna anevolutionarypathtoalteredcofactorspecificityinametalloenzyme
AT garciayuritzim anevolutionarypathtoalteredcofactorspecificityinametalloenzyme
AT sendrakacperm anevolutionarypathtoalteredcofactorspecificityinametalloenzyme
AT baslearnaud anevolutionarypathtoalteredcofactorspecificityinametalloenzyme
AT mackenzieeilidhs anevolutionarypathtoalteredcofactorspecificityinametalloenzyme
AT tarrantemma anevolutionarypathtoalteredcofactorspecificityinametalloenzyme
AT cardpatrick anevolutionarypathtoalteredcofactorspecificityinametalloenzyme
AT tabaresleandroc anevolutionarypathtoalteredcofactorspecificityinametalloenzyme
AT bicepcedric anevolutionarypathtoalteredcofactorspecificityinametalloenzyme
AT unsun anevolutionarypathtoalteredcofactorspecificityinametalloenzyme
AT kehlfiethomase anevolutionarypathtoalteredcofactorspecificityinametalloenzyme
AT waldronkevinj anevolutionarypathtoalteredcofactorspecificityinametalloenzyme
AT barwinskasendraanna evolutionarypathtoalteredcofactorspecificityinametalloenzyme
AT garciayuritzim evolutionarypathtoalteredcofactorspecificityinametalloenzyme
AT sendrakacperm evolutionarypathtoalteredcofactorspecificityinametalloenzyme
AT baslearnaud evolutionarypathtoalteredcofactorspecificityinametalloenzyme
AT mackenzieeilidhs evolutionarypathtoalteredcofactorspecificityinametalloenzyme
AT tarrantemma evolutionarypathtoalteredcofactorspecificityinametalloenzyme
AT cardpatrick evolutionarypathtoalteredcofactorspecificityinametalloenzyme
AT tabaresleandroc evolutionarypathtoalteredcofactorspecificityinametalloenzyme
AT bicepcedric evolutionarypathtoalteredcofactorspecificityinametalloenzyme
AT unsun evolutionarypathtoalteredcofactorspecificityinametalloenzyme
AT kehlfiethomase evolutionarypathtoalteredcofactorspecificityinametalloenzyme
AT waldronkevinj evolutionarypathtoalteredcofactorspecificityinametalloenzyme