Cargando…
A VersaTile-driven platform for rapid hit-to-lead development of engineered lysins
Health care authorities are calling for new antibacterial therapies to cope with the global emergence of antibiotic-resistant bacteria. Bacteriophage-encoded lysins are a unique class of antibacterials with promising (pre)clinical progress. Custom engineering of lysins allows for the creation of var...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7269649/ https://www.ncbi.nlm.nih.gov/pubmed/32537492 http://dx.doi.org/10.1126/sciadv.aaz1136 |
Sumario: | Health care authorities are calling for new antibacterial therapies to cope with the global emergence of antibiotic-resistant bacteria. Bacteriophage-encoded lysins are a unique class of antibacterials with promising (pre)clinical progress. Custom engineering of lysins allows for the creation of variants against potentially any bacterial pathogen. We here present a high-throughput hit-to-lead development platform for engineered lysins. The platform is driven by VersaTile, a new DNA assembly method for the rapid construction of combinatorial libraries of engineered lysins. We constructed approximately 10,000 lysin variants. Using an iterative screening procedure, we identified a lead variant with high antibacterial activity against Acinetobacter baumannii in human serum and an ex vivo pig burn wound model. This generic platform could offer new opportunities to populate the preclinical pipeline with engineered lysins for diverse (therapeutic) applications. |
---|