Cargando…
A Single Bout of Aerobic Exercise Provides an Immediate “Boost” to Cognitive Flexibility
Executive function includes the core components of working memory, inhibitory control, and cognitive flexibility. A wealth of studies demonstrate that working memory and inhibitory control improve following a single bout of exercise; however, a paucity – and equivocal – body of work has demonstrated...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7273451/ https://www.ncbi.nlm.nih.gov/pubmed/32547460 http://dx.doi.org/10.3389/fpsyg.2020.01106 |
Sumario: | Executive function includes the core components of working memory, inhibitory control, and cognitive flexibility. A wealth of studies demonstrate that working memory and inhibitory control improve following a single bout of exercise; however, a paucity – and equivocal – body of work has demonstrated a similar benefit for cognitive flexibility. Cognitive flexibility underlies switching between different attentional- and motor-related goals, and a potential limitation of previous work examining this component in an exercise context is that they included tasks involving non-executive processes (i.e., numerosity, parity, and letter judgments). To address this issue, Experiment 1 employed a 20-min bout of aerobic exercise and examined pre- and immediate post-exercise cognitive flexibility via stimulus-driven (SD) and minimally delayed (MD) saccades ordered in an AABB task-switching paradigm. Stimulus-driven saccades are a standard task requiring a response at target onset, whereas MD saccades are a non-standard and top-down task requiring a response only after the target is extinguished. Work has shown that RTs for a SD saccade preceded by a MD saccade are longer than when a SD saccade is preceded by its same task-type, whereas the converse switch does not influence performance (i.e., the unidirectional switch-cost). Experiment 1 yielded a 28 ms and 8 ms unidirectional switch-cost pre- and post-exercise, respectively (ps < 0.001); however, the magnitude of the switch-cost was reduced post-exercise (p = 0.005). Experiment 2 involved a non-exercise control condition and yielded a reliable and equivalent magnitude unidirectional switch-cost at a pre- (28 ms) and post-break (26 ms) assessment (ps < 0.001). Accordingly, a single-bout of exercise improved task-switching efficiency and thereby provides convergent evidence that exercise provides a global benefit to the core components of executive function. |
---|