Cargando…
Control of criticality and computation in spiking neuromorphic networks with plasticity
The critical state is assumed to be optimal for any computation in recurrent neural networks, because criticality maximizes a number of abstract computational properties. We challenge this assumption by evaluating the performance of a spiking recurrent neural network on a set of tasks of varying com...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7275091/ https://www.ncbi.nlm.nih.gov/pubmed/32503982 http://dx.doi.org/10.1038/s41467-020-16548-3 |