Cargando…
Control of criticality and computation in spiking neuromorphic networks with plasticity
The critical state is assumed to be optimal for any computation in recurrent neural networks, because criticality maximizes a number of abstract computational properties. We challenge this assumption by evaluating the performance of a spiking recurrent neural network on a set of tasks of varying com...
Autores principales: | Cramer, Benjamin, Stöckel, David, Kreft, Markus, Wibral, Michael, Schemmel, Johannes, Meier, Karlheinz, Priesemann, Viola |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7275091/ https://www.ncbi.nlm.nih.gov/pubmed/32503982 http://dx.doi.org/10.1038/s41467-020-16548-3 |
Ejemplares similares
-
Is a 4-Bit Synaptic Weight Resolution Enough? – Constraints on Enabling Spike-Timing Dependent Plasticity in Neuromorphic Hardware
por: Pfeil, Thomas, et al.
Publicado: (2012) -
Compensating Inhomogeneities of Neuromorphic VLSI Devices Via Short-Term Synaptic Plasticity
por: Bill, Johannes, et al.
Publicado: (2010) -
Six Networks on a Universal Neuromorphic Computing Substrate
por: Pfeil, Thomas, et al.
Publicado: (2013) -
Verifying the biological relevance of a neuromorphic hardware device
por: Brüderle, Daniel, et al.
Publicado: (2007) -
Demonstrating Advantages of Neuromorphic Computation: A Pilot Study
por: Wunderlich, Timo, et al.
Publicado: (2019)