Cargando…

The Antitumor Agent Ansamitocin P-3 Binds to Cell Division Protein FtsZ in Actinosynnema pretiosum

Ansamitocin P-3 (AP-3) is an important antitumor agent. The antitumor activity of AP-3 is a result of its affinity towards β-tubulin in eukaryotic cells. In this study, in order to improve AP-3 production, the reason for severe growth inhibition of the AP-3 producing strain Actinosynnema pretiosum W...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Xinran, Wang, Rufan, Kang, Qianjin, Bai, Linquan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7277737/
https://www.ncbi.nlm.nih.gov/pubmed/32365857
http://dx.doi.org/10.3390/biom10050699
Descripción
Sumario:Ansamitocin P-3 (AP-3) is an important antitumor agent. The antitumor activity of AP-3 is a result of its affinity towards β-tubulin in eukaryotic cells. In this study, in order to improve AP-3 production, the reason for severe growth inhibition of the AP-3 producing strain Actinosynnema pretiosum WXR-24 under high concentrations of exogenous AP-3 was investigated. The cell division protein FtsZ, which is the analogue of β-tubulin in bacteria, was discovered to be the AP-3 target through structural comparison followed by a SPR biosensor assay. AP-3 was trapped into a less hydrophilic groove near the GTPase pocket on FtsZ by hydrogen bounding and hydrophobic interactions, as revealed by docking analysis. After overexpression of the APASM_5716 gene coding for FtsZ in WXR-30, the resistance to AP-3 was significantly improved. Moreover, AP-3 yield was increased from 250.66 mg/L to 327.37 mg/L. After increasing the concentration of supplemented yeast extract, the final yield of AP-3 reached 371.16 mg/L. In summary, we demonstrate that the cell division protein FtsZ is newly identified as the bacterial target of AP-3, and improving resistance is an effective strategy to enhance AP-3 production.