Cargando…

Comparison of the Potential Abilities of Three Spectroscopy Methods: Near-Infrared, Mid-Infrared, and Molecular Fluorescence, to Predict Carotenoid, Vitamin and Fatty Acid Contents in Cow Milk

The objective of this work is to compare the ability of three spectroscopy techniques: molecular fluorescence, near-infrared (NIR), and mid-infrared with attenuated total reflectance (MIR-ATR) spectroscopy to predict the concentrations of 8 carotenoids, 6 vitamins and 22 fatty acids (FA) in cow’s mi...

Descripción completa

Detalles Bibliográficos
Autores principales: Soulat, Julien, Andueza, Donato, Graulet, Benoît, Girard, Christiane L., Labonne, Cyril, Aït-Kaddour, Abderrahmane, Martin, Bruno, Ferlay, Anne
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7278693/
https://www.ncbi.nlm.nih.gov/pubmed/32384636
http://dx.doi.org/10.3390/foods9050592
Descripción
Sumario:The objective of this work is to compare the ability of three spectroscopy techniques: molecular fluorescence, near-infrared (NIR), and mid-infrared with attenuated total reflectance (MIR-ATR) spectroscopy to predict the concentrations of 8 carotenoids, 6 vitamins and 22 fatty acids (FA) in cow’s milk. A dataset was built through the analysis of 242 frozen milk samples from different experiments. The milk compounds were analysed using reference methods and by NIR, MIR-ATR, and fluorescence to establish different predictive models. NIR spectroscopy allowed for better prediction of cis9-β-carotene, β-cryptoxanthin and the sum of carotenoids than the other techniques, with a coefficient of cross-validation in calibration (R(2)CV) > 0.60 and a coefficient of determination in validation (R(2)V) > 0.50. Their standard errors of prediction (SEP) were equal to 0.01, except for the sum of carotenoids (SEP = 0.15). However, MIR-ATR and fluorescence seem usable for the prediction of lutein and all-trans-β-carotene, respectively. These three spectroscopy methods did not allow us to predict (R(2)CV < 0.30) vitamin contents except, for vitamin A (the best R²CV = 0.65 with NIR and SEP = 0.15) and α-tocopherol (the best R²CV = 0.56 with MIR-ATR and SEP = 0.41), but all R²V were <0.30. NIR spectroscopy yielded the best prediction of the selected milk FA.