Cargando…
Targeting Nuclear NAD(+) Synthesis Inhibits DNA Repair, Impairs Metabolic Adaptation and Increases Chemosensitivity of U-2OS Osteosarcoma Cells
Osteosarcoma (OS) is the most common bone tumor in children and adolescents. Modern OS treatment, based on the combination of neoadjuvant chemotherapy (cisplatin + doxorubicin + methotrexate) with subsequent surgical removal of the primary tumor and metastases, has dramatically improved overall surv...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7281559/ https://www.ncbi.nlm.nih.gov/pubmed/32392755 http://dx.doi.org/10.3390/cancers12051180 |
_version_ | 1783543948827951104 |
---|---|
author | Kiss, Alexandra Ráduly, Arnold Péter Regdon, Zsolt Polgár, Zsuzsanna Tarapcsák, Szabolcs Sturniolo, Isotta El-Hamoly, Tarek Virág, László Hegedűs, Csaba |
author_facet | Kiss, Alexandra Ráduly, Arnold Péter Regdon, Zsolt Polgár, Zsuzsanna Tarapcsák, Szabolcs Sturniolo, Isotta El-Hamoly, Tarek Virág, László Hegedűs, Csaba |
author_sort | Kiss, Alexandra |
collection | PubMed |
description | Osteosarcoma (OS) is the most common bone tumor in children and adolescents. Modern OS treatment, based on the combination of neoadjuvant chemotherapy (cisplatin + doxorubicin + methotrexate) with subsequent surgical removal of the primary tumor and metastases, has dramatically improved overall survival of OS patients. However, further research is needed to identify new therapeutic targets. Here we report that expression level of the nuclear NAD synthesis enzyme, nicotinamide mononucleotide adenylyltransferase-1 (NMNAT1), increases in U-2OS cells upon exposure to DNA damaging agents, suggesting the involvement of the enzyme in the DNA damage response. Moreover, genetic inactivation of NMNAT1 sensitizes U-2OS osteosarcoma cells to cisplatin, doxorubicin, or a combination of these two treatments. Increased cisplatin-induced cell death of NMNAT1(−/−) cells showed features of both apoptosis and necroptosis, as indicated by the protective effect of the caspase-3 inhibitor z-DEVD-FMK and the necroptosis inhibitor necrostatin-1. Activation of the DNA damage sensor enzyme poly(ADP-ribose) polymerase 1 (PARP1), a major consumer of NAD(+) in the nucleus, was fully blocked by NMNAT1 inactivation, leading to increased DNA damage (phospho-H2AX foci). The PARP inhibitor, olaparib, sensitized wild type but not NMNAT1(−/−) cells to cisplatin-induced anti-clonogenic effects, suggesting that impaired PARP1 activity is important for chemosensitization. Cisplatin-induced cell death of NMNAT1(−/−) cells was also characterized by a marked drop in cellular ATP levels and impaired mitochondrial respiratory reserve capacity, highlighting the central role of compromised cellular bioenergetics in chemosensitization by NMNAT1 inactivation. Moreover, NMNAT1 cells also displayed markedly higher sensitivity to cisplatin when grown as spheroids in 3D culture. In summary, our work provides the first evidence that NMNAT1 is a promising therapeutic target for osteosarcoma and possibly other tumors as well. |
format | Online Article Text |
id | pubmed-7281559 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-72815592020-06-17 Targeting Nuclear NAD(+) Synthesis Inhibits DNA Repair, Impairs Metabolic Adaptation and Increases Chemosensitivity of U-2OS Osteosarcoma Cells Kiss, Alexandra Ráduly, Arnold Péter Regdon, Zsolt Polgár, Zsuzsanna Tarapcsák, Szabolcs Sturniolo, Isotta El-Hamoly, Tarek Virág, László Hegedűs, Csaba Cancers (Basel) Article Osteosarcoma (OS) is the most common bone tumor in children and adolescents. Modern OS treatment, based on the combination of neoadjuvant chemotherapy (cisplatin + doxorubicin + methotrexate) with subsequent surgical removal of the primary tumor and metastases, has dramatically improved overall survival of OS patients. However, further research is needed to identify new therapeutic targets. Here we report that expression level of the nuclear NAD synthesis enzyme, nicotinamide mononucleotide adenylyltransferase-1 (NMNAT1), increases in U-2OS cells upon exposure to DNA damaging agents, suggesting the involvement of the enzyme in the DNA damage response. Moreover, genetic inactivation of NMNAT1 sensitizes U-2OS osteosarcoma cells to cisplatin, doxorubicin, or a combination of these two treatments. Increased cisplatin-induced cell death of NMNAT1(−/−) cells showed features of both apoptosis and necroptosis, as indicated by the protective effect of the caspase-3 inhibitor z-DEVD-FMK and the necroptosis inhibitor necrostatin-1. Activation of the DNA damage sensor enzyme poly(ADP-ribose) polymerase 1 (PARP1), a major consumer of NAD(+) in the nucleus, was fully blocked by NMNAT1 inactivation, leading to increased DNA damage (phospho-H2AX foci). The PARP inhibitor, olaparib, sensitized wild type but not NMNAT1(−/−) cells to cisplatin-induced anti-clonogenic effects, suggesting that impaired PARP1 activity is important for chemosensitization. Cisplatin-induced cell death of NMNAT1(−/−) cells was also characterized by a marked drop in cellular ATP levels and impaired mitochondrial respiratory reserve capacity, highlighting the central role of compromised cellular bioenergetics in chemosensitization by NMNAT1 inactivation. Moreover, NMNAT1 cells also displayed markedly higher sensitivity to cisplatin when grown as spheroids in 3D culture. In summary, our work provides the first evidence that NMNAT1 is a promising therapeutic target for osteosarcoma and possibly other tumors as well. MDPI 2020-05-07 /pmc/articles/PMC7281559/ /pubmed/32392755 http://dx.doi.org/10.3390/cancers12051180 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kiss, Alexandra Ráduly, Arnold Péter Regdon, Zsolt Polgár, Zsuzsanna Tarapcsák, Szabolcs Sturniolo, Isotta El-Hamoly, Tarek Virág, László Hegedűs, Csaba Targeting Nuclear NAD(+) Synthesis Inhibits DNA Repair, Impairs Metabolic Adaptation and Increases Chemosensitivity of U-2OS Osteosarcoma Cells |
title | Targeting Nuclear NAD(+) Synthesis Inhibits DNA Repair, Impairs Metabolic Adaptation and Increases Chemosensitivity of U-2OS Osteosarcoma Cells |
title_full | Targeting Nuclear NAD(+) Synthesis Inhibits DNA Repair, Impairs Metabolic Adaptation and Increases Chemosensitivity of U-2OS Osteosarcoma Cells |
title_fullStr | Targeting Nuclear NAD(+) Synthesis Inhibits DNA Repair, Impairs Metabolic Adaptation and Increases Chemosensitivity of U-2OS Osteosarcoma Cells |
title_full_unstemmed | Targeting Nuclear NAD(+) Synthesis Inhibits DNA Repair, Impairs Metabolic Adaptation and Increases Chemosensitivity of U-2OS Osteosarcoma Cells |
title_short | Targeting Nuclear NAD(+) Synthesis Inhibits DNA Repair, Impairs Metabolic Adaptation and Increases Chemosensitivity of U-2OS Osteosarcoma Cells |
title_sort | targeting nuclear nad(+) synthesis inhibits dna repair, impairs metabolic adaptation and increases chemosensitivity of u-2os osteosarcoma cells |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7281559/ https://www.ncbi.nlm.nih.gov/pubmed/32392755 http://dx.doi.org/10.3390/cancers12051180 |
work_keys_str_mv | AT kissalexandra targetingnuclearnadsynthesisinhibitsdnarepairimpairsmetabolicadaptationandincreaseschemosensitivityofu2ososteosarcomacells AT radulyarnoldpeter targetingnuclearnadsynthesisinhibitsdnarepairimpairsmetabolicadaptationandincreaseschemosensitivityofu2ososteosarcomacells AT regdonzsolt targetingnuclearnadsynthesisinhibitsdnarepairimpairsmetabolicadaptationandincreaseschemosensitivityofu2ososteosarcomacells AT polgarzsuzsanna targetingnuclearnadsynthesisinhibitsdnarepairimpairsmetabolicadaptationandincreaseschemosensitivityofu2ososteosarcomacells AT tarapcsakszabolcs targetingnuclearnadsynthesisinhibitsdnarepairimpairsmetabolicadaptationandincreaseschemosensitivityofu2ososteosarcomacells AT sturnioloisotta targetingnuclearnadsynthesisinhibitsdnarepairimpairsmetabolicadaptationandincreaseschemosensitivityofu2ososteosarcomacells AT elhamolytarek targetingnuclearnadsynthesisinhibitsdnarepairimpairsmetabolicadaptationandincreaseschemosensitivityofu2ososteosarcomacells AT viraglaszlo targetingnuclearnadsynthesisinhibitsdnarepairimpairsmetabolicadaptationandincreaseschemosensitivityofu2ososteosarcomacells AT hegeduscsaba targetingnuclearnadsynthesisinhibitsdnarepairimpairsmetabolicadaptationandincreaseschemosensitivityofu2ososteosarcomacells |