Cargando…
P4HB modulates epithelial-mesenchymal transition and the β-catenin/Snail pathway influencing chemoresistance in liver cancer cells
The aim of the present study was to investigate the role of prolyl 4-hydroxylase beta polypeptide (P4HB) in the chemoresistance of liver cancer. Drug-resistant liver cancer cell lines, such as HepG2/adriamycin (ADR) cells, were treated and screened using adriamycin. Gene interference was used to sil...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7285890/ https://www.ncbi.nlm.nih.gov/pubmed/32565952 http://dx.doi.org/10.3892/ol.2020.11569 |
_version_ | 1783544782892564480 |
---|---|
author | Ma, Xing Wang, Jiening Zhuang, Juhua Ma, Xiaokun Zheng, Ni Song, Yanan Xia, Wei |
author_facet | Ma, Xing Wang, Jiening Zhuang, Juhua Ma, Xiaokun Zheng, Ni Song, Yanan Xia, Wei |
author_sort | Ma, Xing |
collection | PubMed |
description | The aim of the present study was to investigate the role of prolyl 4-hydroxylase beta polypeptide (P4HB) in the chemoresistance of liver cancer. Drug-resistant liver cancer cell lines, such as HepG2/adriamycin (ADR) cells, were treated and screened using adriamycin. Gene interference was used to silence the expression of P4HB in liver cancer cells. Cell viability, invasiveness and migration were assessed using CCK8, Transwell and wound healing assays, respectively. In addition, changes to key genes and proteins in the epithelial-mesenchymal transition (EMT) and β-catenin/Snail pathway were analyzed using reverse transcription-quantitative PCR and western blotting. Drug-resistant HepG2/ADR cells were successfully cultivated; the IC(50) to ADR for HepG2/ADR and HepG2 cell lines was 4.85 and 0.61 µM, respectively. HepG2/ADR cells exhibited higher invasion and migration abilities compared with HepG2 cells (P<0.05). E-cadherin mRNA and protein expression levels in HepG2/ADR cells were decreased significantly, whereas P4HB, N-cadherin and vimentin mRNA and protein levels were significantly increased compared with HepG2 cells (all P<0.05). Knockdown of P4HB significantly decreased cell viability and the invasion and migration ability of HepG2/ADR cells. In addition, P4HB knockdown enhanced E-cadherin mRNA and protein expression levels, whereas N-cadherin, vimentin, total β-catenin, nuclear β-catenin and Snail mRNA and protein levels were significantly decreased (all P<0.05). Overall, the present study demonstrated that EMT and β-catenin/Snail pathway influence P4HB modulation in liver cancer chemoresistance. |
format | Online Article Text |
id | pubmed-7285890 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | D.A. Spandidos |
record_format | MEDLINE/PubMed |
spelling | pubmed-72858902020-06-18 P4HB modulates epithelial-mesenchymal transition and the β-catenin/Snail pathway influencing chemoresistance in liver cancer cells Ma, Xing Wang, Jiening Zhuang, Juhua Ma, Xiaokun Zheng, Ni Song, Yanan Xia, Wei Oncol Lett Articles The aim of the present study was to investigate the role of prolyl 4-hydroxylase beta polypeptide (P4HB) in the chemoresistance of liver cancer. Drug-resistant liver cancer cell lines, such as HepG2/adriamycin (ADR) cells, were treated and screened using adriamycin. Gene interference was used to silence the expression of P4HB in liver cancer cells. Cell viability, invasiveness and migration were assessed using CCK8, Transwell and wound healing assays, respectively. In addition, changes to key genes and proteins in the epithelial-mesenchymal transition (EMT) and β-catenin/Snail pathway were analyzed using reverse transcription-quantitative PCR and western blotting. Drug-resistant HepG2/ADR cells were successfully cultivated; the IC(50) to ADR for HepG2/ADR and HepG2 cell lines was 4.85 and 0.61 µM, respectively. HepG2/ADR cells exhibited higher invasion and migration abilities compared with HepG2 cells (P<0.05). E-cadherin mRNA and protein expression levels in HepG2/ADR cells were decreased significantly, whereas P4HB, N-cadherin and vimentin mRNA and protein levels were significantly increased compared with HepG2 cells (all P<0.05). Knockdown of P4HB significantly decreased cell viability and the invasion and migration ability of HepG2/ADR cells. In addition, P4HB knockdown enhanced E-cadherin mRNA and protein expression levels, whereas N-cadherin, vimentin, total β-catenin, nuclear β-catenin and Snail mRNA and protein levels were significantly decreased (all P<0.05). Overall, the present study demonstrated that EMT and β-catenin/Snail pathway influence P4HB modulation in liver cancer chemoresistance. D.A. Spandidos 2020-07 2020-04-23 /pmc/articles/PMC7285890/ /pubmed/32565952 http://dx.doi.org/10.3892/ol.2020.11569 Text en Copyright: © Ma et al. This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. |
spellingShingle | Articles Ma, Xing Wang, Jiening Zhuang, Juhua Ma, Xiaokun Zheng, Ni Song, Yanan Xia, Wei P4HB modulates epithelial-mesenchymal transition and the β-catenin/Snail pathway influencing chemoresistance in liver cancer cells |
title | P4HB modulates epithelial-mesenchymal transition and the β-catenin/Snail pathway influencing chemoresistance in liver cancer cells |
title_full | P4HB modulates epithelial-mesenchymal transition and the β-catenin/Snail pathway influencing chemoresistance in liver cancer cells |
title_fullStr | P4HB modulates epithelial-mesenchymal transition and the β-catenin/Snail pathway influencing chemoresistance in liver cancer cells |
title_full_unstemmed | P4HB modulates epithelial-mesenchymal transition and the β-catenin/Snail pathway influencing chemoresistance in liver cancer cells |
title_short | P4HB modulates epithelial-mesenchymal transition and the β-catenin/Snail pathway influencing chemoresistance in liver cancer cells |
title_sort | p4hb modulates epithelial-mesenchymal transition and the β-catenin/snail pathway influencing chemoresistance in liver cancer cells |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7285890/ https://www.ncbi.nlm.nih.gov/pubmed/32565952 http://dx.doi.org/10.3892/ol.2020.11569 |
work_keys_str_mv | AT maxing p4hbmodulatesepithelialmesenchymaltransitionandthebcateninsnailpathwayinfluencingchemoresistanceinlivercancercells AT wangjiening p4hbmodulatesepithelialmesenchymaltransitionandthebcateninsnailpathwayinfluencingchemoresistanceinlivercancercells AT zhuangjuhua p4hbmodulatesepithelialmesenchymaltransitionandthebcateninsnailpathwayinfluencingchemoresistanceinlivercancercells AT maxiaokun p4hbmodulatesepithelialmesenchymaltransitionandthebcateninsnailpathwayinfluencingchemoresistanceinlivercancercells AT zhengni p4hbmodulatesepithelialmesenchymaltransitionandthebcateninsnailpathwayinfluencingchemoresistanceinlivercancercells AT songyanan p4hbmodulatesepithelialmesenchymaltransitionandthebcateninsnailpathwayinfluencingchemoresistanceinlivercancercells AT xiawei p4hbmodulatesepithelialmesenchymaltransitionandthebcateninsnailpathwayinfluencingchemoresistanceinlivercancercells |