Cargando…
Al(x)In(1−x)N on Si (100) Solar Cells (x = 0–0.56) Deposited by RF Sputtering
We investigate the photovoltaic performance of solar cells based on n-Al(x)In(1−x)N (x = 0–0.56) on p-Si (100) hetero-junctions deposited by radio frequency sputtering. The Al(x)In(1−x)N layers own an optical bandgap absorption edge tuneable from 1.73 eV to 2.56 eV within the Al content range. This...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7287894/ https://www.ncbi.nlm.nih.gov/pubmed/32438685 http://dx.doi.org/10.3390/ma13102336 |
_version_ | 1783545155460005888 |
---|---|
author | Valdueza-Felip, Sirona Blasco, Rodrigo Olea, Javier Díaz-Lobo, Alba Braña, Alejandro F. Naranjo, Fernando B. |
author_facet | Valdueza-Felip, Sirona Blasco, Rodrigo Olea, Javier Díaz-Lobo, Alba Braña, Alejandro F. Naranjo, Fernando B. |
author_sort | Valdueza-Felip, Sirona |
collection | PubMed |
description | We investigate the photovoltaic performance of solar cells based on n-Al(x)In(1−x)N (x = 0–0.56) on p-Si (100) hetero-junctions deposited by radio frequency sputtering. The Al(x)In(1−x)N layers own an optical bandgap absorption edge tuneable from 1.73 eV to 2.56 eV within the Al content range. This increase of Al content results in more resistive layers (≈10(−4)–1 Ω·cm) while the residual carrier concentration drops from ~10(21) to ~10(19) cm(−3). As a result, the top n-contact resistance varies from ≈10(−1) to 1 MΩ for InN to Al(0.56)In(0.44)N-based devices, respectively. Best results are obtained for devices with 28% Al that exhibit a broad external quantum efficiency covering the full solar spectrum with a maximum of 80% at 750 nm, an open-circuit voltage of 0.39 V, a short-circuit current density of 17.1 mA/cm(2) and a conversion efficiency of 2.12% under air mass 1.5 global (AM1.5G) illumination (1 sun), rendering them promising for novel low-cost III-nitride on Si photovoltaic devices. For Al contents above 28%, the electrical performance of the structures lessens due to the high top-contact resistivity. |
format | Online Article Text |
id | pubmed-7287894 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-72878942020-06-15 Al(x)In(1−x)N on Si (100) Solar Cells (x = 0–0.56) Deposited by RF Sputtering Valdueza-Felip, Sirona Blasco, Rodrigo Olea, Javier Díaz-Lobo, Alba Braña, Alejandro F. Naranjo, Fernando B. Materials (Basel) Article We investigate the photovoltaic performance of solar cells based on n-Al(x)In(1−x)N (x = 0–0.56) on p-Si (100) hetero-junctions deposited by radio frequency sputtering. The Al(x)In(1−x)N layers own an optical bandgap absorption edge tuneable from 1.73 eV to 2.56 eV within the Al content range. This increase of Al content results in more resistive layers (≈10(−4)–1 Ω·cm) while the residual carrier concentration drops from ~10(21) to ~10(19) cm(−3). As a result, the top n-contact resistance varies from ≈10(−1) to 1 MΩ for InN to Al(0.56)In(0.44)N-based devices, respectively. Best results are obtained for devices with 28% Al that exhibit a broad external quantum efficiency covering the full solar spectrum with a maximum of 80% at 750 nm, an open-circuit voltage of 0.39 V, a short-circuit current density of 17.1 mA/cm(2) and a conversion efficiency of 2.12% under air mass 1.5 global (AM1.5G) illumination (1 sun), rendering them promising for novel low-cost III-nitride on Si photovoltaic devices. For Al contents above 28%, the electrical performance of the structures lessens due to the high top-contact resistivity. MDPI 2020-05-19 /pmc/articles/PMC7287894/ /pubmed/32438685 http://dx.doi.org/10.3390/ma13102336 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Valdueza-Felip, Sirona Blasco, Rodrigo Olea, Javier Díaz-Lobo, Alba Braña, Alejandro F. Naranjo, Fernando B. Al(x)In(1−x)N on Si (100) Solar Cells (x = 0–0.56) Deposited by RF Sputtering |
title | Al(x)In(1−x)N on Si (100) Solar Cells (x = 0–0.56) Deposited by RF Sputtering |
title_full | Al(x)In(1−x)N on Si (100) Solar Cells (x = 0–0.56) Deposited by RF Sputtering |
title_fullStr | Al(x)In(1−x)N on Si (100) Solar Cells (x = 0–0.56) Deposited by RF Sputtering |
title_full_unstemmed | Al(x)In(1−x)N on Si (100) Solar Cells (x = 0–0.56) Deposited by RF Sputtering |
title_short | Al(x)In(1−x)N on Si (100) Solar Cells (x = 0–0.56) Deposited by RF Sputtering |
title_sort | al(x)in(1−x)n on si (100) solar cells (x = 0–0.56) deposited by rf sputtering |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7287894/ https://www.ncbi.nlm.nih.gov/pubmed/32438685 http://dx.doi.org/10.3390/ma13102336 |
work_keys_str_mv | AT valduezafelipsirona alxin1xnonsi100solarcellsx0056depositedbyrfsputtering AT blascorodrigo alxin1xnonsi100solarcellsx0056depositedbyrfsputtering AT oleajavier alxin1xnonsi100solarcellsx0056depositedbyrfsputtering AT diazloboalba alxin1xnonsi100solarcellsx0056depositedbyrfsputtering AT branaalejandrof alxin1xnonsi100solarcellsx0056depositedbyrfsputtering AT naranjofernandob alxin1xnonsi100solarcellsx0056depositedbyrfsputtering |