Cargando…
Parametric Investigation of Particle Swarm Optimization to Improve the Performance of the Adaptive Neuro-Fuzzy Inference System in Determining the Buckling Capacity of Circular Opening Steel Beams
In this paper, the main objectives are to investigate and select the most suitable parameters used in particle swarm optimization (PSO), namely the number of rules (n(rule)), population size (n(pop)), initial weight (w(ini)), personal learning coefficient (c(1)), global learning coefficient (c(2)),...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7288150/ https://www.ncbi.nlm.nih.gov/pubmed/32408473 http://dx.doi.org/10.3390/ma13102210 |