Cargando…
Parametric Investigation of Particle Swarm Optimization to Improve the Performance of the Adaptive Neuro-Fuzzy Inference System in Determining the Buckling Capacity of Circular Opening Steel Beams
In this paper, the main objectives are to investigate and select the most suitable parameters used in particle swarm optimization (PSO), namely the number of rules (n(rule)), population size (n(pop)), initial weight (w(ini)), personal learning coefficient (c(1)), global learning coefficient (c(2)),...
Autores principales: | Nguyen, Quang Hung, Ly, Hai-Bang, Le, Tien-Thinh, Nguyen, Thuy-Anh, Phan, Viet-Hung, Tran, Van Quan, Pham, Binh Thai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7288150/ https://www.ncbi.nlm.nih.gov/pubmed/32408473 http://dx.doi.org/10.3390/ma13102210 |
Ejemplares similares
-
A Novel Hybrid Model Based on a Feedforward Neural Network and One Step Secant Algorithm for Prediction of Load-Bearing Capacity of Rectangular Concrete-Filled Steel Tube Columns
por: Nguyen, Quang Hung, et al.
Publicado: (2020) -
Hybrid Artificial Intelligence Approaches for Predicting Buckling Damage of Steel Columns Under Axial Compression
por: Le, Lu Minh, et al.
Publicado: (2019) -
Optimization of Artificial Intelligence System by Evolutionary Algorithm for Prediction of Axial Capacity of Rectangular Concrete Filled Steel Tubes under Compression
por: Nguyen, Hung Quang, et al.
Publicado: (2020) -
Quantification of Uncertainties on the Critical Buckling Load of Columns under Axial Compression with Uncertain Random Materials
por: Ly, Hai-Bang, et al.
Publicado: (2019) -
Investigation of ANN architecture for predicting shear strength of fiber reinforcement bars concrete beams
por: Nguyen, Quang Hung, et al.
Publicado: (2021)