Cargando…
Physiological and metabolic features of mice with CRISPR/Cas9-mediated loss-of-function in growth hormone-releasing hormone
Our previous study demonstrated that the loss of growth hormone releasing hormone (GHRH) results in increased lifespan and improved metabolic homeostasis in the mouse model generated by classical embryonic stem cell-based gene-targeting method. In this study, we targeted the GHRH gene using the CRIS...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7288930/ https://www.ncbi.nlm.nih.gov/pubmed/32422607 http://dx.doi.org/10.18632/aging.103242 |
_version_ | 1783545368043061248 |
---|---|
author | Icyuz, Mert Fitch, Michael Zhang, Fang Challa, Anil Sun, Liou Y. |
author_facet | Icyuz, Mert Fitch, Michael Zhang, Fang Challa, Anil Sun, Liou Y. |
author_sort | Icyuz, Mert |
collection | PubMed |
description | Our previous study demonstrated that the loss of growth hormone releasing hormone (GHRH) results in increased lifespan and improved metabolic homeostasis in the mouse model generated by classical embryonic stem cell-based gene-targeting method. In this study, we targeted the GHRH gene using the CRISPR/Cas9 technology to avoid passenger alleles/mutations and performed in-depth physiological and metabolic characterization. In agreement with our previous observations, male and female GHRH(-/-) mice have significantly reduced body weight and enhanced insulin sensitivity when compared to wild type littermates. Dual-energy X-ray absorptiometry showed that there were significant decreases in lean mass, bone mineral content and density, and a dramatic increase in fat mass of GHRH(-/-) mice when compared to wild type littermates. Indirect calorimetry measurements showed dramatic reductions in oxygen consumption, carbon dioxide production and energy expenditure in GHRH(-/-) mice compared to wild type mice in both light and dark cycles. Respiratory exchange ratio was significantly lower in GHRH(-/-) mice during the light cycle, but not during the dark cycle, indicating a circadian related metabolic shift towards fat utilization in the growth hormone deficient mice. The novel CRISPR/Cas9 GHRH(-/-) mice are exhibiting the consistent and unique physiological and metabolic characteristics, which might mediate the longevity effects of growth hormone deficiency in mice. |
format | Online Article Text |
id | pubmed-7288930 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Impact Journals |
record_format | MEDLINE/PubMed |
spelling | pubmed-72889302020-06-22 Physiological and metabolic features of mice with CRISPR/Cas9-mediated loss-of-function in growth hormone-releasing hormone Icyuz, Mert Fitch, Michael Zhang, Fang Challa, Anil Sun, Liou Y. Aging (Albany NY) Research Paper Our previous study demonstrated that the loss of growth hormone releasing hormone (GHRH) results in increased lifespan and improved metabolic homeostasis in the mouse model generated by classical embryonic stem cell-based gene-targeting method. In this study, we targeted the GHRH gene using the CRISPR/Cas9 technology to avoid passenger alleles/mutations and performed in-depth physiological and metabolic characterization. In agreement with our previous observations, male and female GHRH(-/-) mice have significantly reduced body weight and enhanced insulin sensitivity when compared to wild type littermates. Dual-energy X-ray absorptiometry showed that there were significant decreases in lean mass, bone mineral content and density, and a dramatic increase in fat mass of GHRH(-/-) mice when compared to wild type littermates. Indirect calorimetry measurements showed dramatic reductions in oxygen consumption, carbon dioxide production and energy expenditure in GHRH(-/-) mice compared to wild type mice in both light and dark cycles. Respiratory exchange ratio was significantly lower in GHRH(-/-) mice during the light cycle, but not during the dark cycle, indicating a circadian related metabolic shift towards fat utilization in the growth hormone deficient mice. The novel CRISPR/Cas9 GHRH(-/-) mice are exhibiting the consistent and unique physiological and metabolic characteristics, which might mediate the longevity effects of growth hormone deficiency in mice. Impact Journals 2020-05-18 /pmc/articles/PMC7288930/ /pubmed/32422607 http://dx.doi.org/10.18632/aging.103242 Text en Copyright © 2020 Icyuz et al. http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Paper Icyuz, Mert Fitch, Michael Zhang, Fang Challa, Anil Sun, Liou Y. Physiological and metabolic features of mice with CRISPR/Cas9-mediated loss-of-function in growth hormone-releasing hormone |
title | Physiological and metabolic features of mice with CRISPR/Cas9-mediated loss-of-function in growth hormone-releasing hormone |
title_full | Physiological and metabolic features of mice with CRISPR/Cas9-mediated loss-of-function in growth hormone-releasing hormone |
title_fullStr | Physiological and metabolic features of mice with CRISPR/Cas9-mediated loss-of-function in growth hormone-releasing hormone |
title_full_unstemmed | Physiological and metabolic features of mice with CRISPR/Cas9-mediated loss-of-function in growth hormone-releasing hormone |
title_short | Physiological and metabolic features of mice with CRISPR/Cas9-mediated loss-of-function in growth hormone-releasing hormone |
title_sort | physiological and metabolic features of mice with crispr/cas9-mediated loss-of-function in growth hormone-releasing hormone |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7288930/ https://www.ncbi.nlm.nih.gov/pubmed/32422607 http://dx.doi.org/10.18632/aging.103242 |
work_keys_str_mv | AT icyuzmert physiologicalandmetabolicfeaturesofmicewithcrisprcas9mediatedlossoffunctioningrowthhormonereleasinghormone AT fitchmichael physiologicalandmetabolicfeaturesofmicewithcrisprcas9mediatedlossoffunctioningrowthhormonereleasinghormone AT zhangfang physiologicalandmetabolicfeaturesofmicewithcrisprcas9mediatedlossoffunctioningrowthhormonereleasinghormone AT challaanil physiologicalandmetabolicfeaturesofmicewithcrisprcas9mediatedlossoffunctioningrowthhormonereleasinghormone AT sunliouy physiologicalandmetabolicfeaturesofmicewithcrisprcas9mediatedlossoffunctioningrowthhormonereleasinghormone |