Cargando…

Analysis of Immune Checkpoint Drug Targets and Tumor Proteotypes in Non-Small Cell Lung Cancer

New therapeutics targeting immune checkpoint proteins have significantly advanced treatment of non-small cell lung cancer (NSCLC), but protein level quantitation of drug targets presents a critical problem. We used multiplexed, targeted mass spectrometry (MS) to quantify immunotherapy target protein...

Descripción completa

Detalles Bibliográficos
Autores principales: Liebler, Daniel C., Holzer, Timothy R., Haragan, Alexander, Morrison, Ryan D., O’Neill Reising, Leslie, Ackermann, Bradley L., Fill, Jeff A., Schade, Andrew E., Gruver, Aaron M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7300007/
https://www.ncbi.nlm.nih.gov/pubmed/32555523
http://dx.doi.org/10.1038/s41598-020-66902-0
Descripción
Sumario:New therapeutics targeting immune checkpoint proteins have significantly advanced treatment of non-small cell lung cancer (NSCLC), but protein level quantitation of drug targets presents a critical problem. We used multiplexed, targeted mass spectrometry (MS) to quantify immunotherapy target proteins PD-1, PD-L1, PD-L2, IDO1, LAG3, TIM3, ICOSLG, VISTA, GITR, and CD40 in formalin-fixed, paraffin-embedded (FFPE) NSCLC specimens. Immunohistochemistry (IHC) and MS measurements for PD-L1 were weakly correlated, but IHC did not distinguish protein abundance differences detected by MS. PD-L2 abundance exceeded PD-L1 in over half the specimens and the drug target proteins all displayed different abundance patterns. mRNA correlated with protein abundance only for PD-1, PD-L1, and IDO1 and tumor mutation burden did not predict abundance of any protein targets. Global proteome analyses identified distinct proteotypes associated with high PD-L1-expressing and high IDO1-expressing NSCLC. MS quantification of multiple drug targets and tissue proteotypes can improve clinical evaluation of immunotherapies for NSCLC.