Cargando…

Learning Functions Using Data-Dependent Regularization: Representer Theorem Revisited

We introduce a data-dependent regularization problem which uses the geometry structure of the data to learn functions from incomplete data. We show another proof of the standard representer theorem when introducing the problem. At the end of the paper, two applications in image processing are used t...

Descripción completa

Detalles Bibliográficos
Autor principal: Zou, Qing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7304014/
http://dx.doi.org/10.1007/978-3-030-50420-5_23