Cargando…
Learning Functions Using Data-Dependent Regularization: Representer Theorem Revisited
We introduce a data-dependent regularization problem which uses the geometry structure of the data to learn functions from incomplete data. We show another proof of the standard representer theorem when introducing the problem. At the end of the paper, two applications in image processing are used t...
Autor principal: | Zou, Qing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7304014/ http://dx.doi.org/10.1007/978-3-030-50420-5_23 |
Ejemplares similares
-
Gull’s Theorem Revisited
por: Gill, Richard D.
Publicado: (2022) -
Integral representations of functions and imbedding theorems
por: Besov, Oleg Vladimirovich, et al.
Publicado: (1979) -
Theorems on regularity and singularity of energy minimizing maps
por: Simon, Leon
Publicado: (1996) -
Learning Invariant Representations using Mutual Information Regularization
por: Tan, Justin
Publicado: (2019) -
The Singularity Theorems of General Relativity and Their Low Regularity Extensions
por: Steinbauer, Roland
Publicado: (2022)