Cargando…
SIX2 Regulates Human β Cell Differentiation from Stem Cells and Functional Maturation In Vitro
Generation of insulin-secreting β cells in vitro is a promising approach for diabetes cell therapy. Human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) are differentiated to β cells (SC-β cells) and mature to undergo glucose-stimulated insulin secretion, but molecula...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7304247/ https://www.ncbi.nlm.nih.gov/pubmed/32460030 http://dx.doi.org/10.1016/j.celrep.2020.107687 |
_version_ | 1783548228445143040 |
---|---|
author | Velazco-Cruz, Leonardo Goedegebuure, Madeleine M. Maxwell, Kristina G. Augsornworawat, Punn Hogrebe, Nathaniel J. Millman, Jeffrey R. |
author_facet | Velazco-Cruz, Leonardo Goedegebuure, Madeleine M. Maxwell, Kristina G. Augsornworawat, Punn Hogrebe, Nathaniel J. Millman, Jeffrey R. |
author_sort | Velazco-Cruz, Leonardo |
collection | PubMed |
description | Generation of insulin-secreting β cells in vitro is a promising approach for diabetes cell therapy. Human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) are differentiated to β cells (SC-β cells) and mature to undergo glucose-stimulated insulin secretion, but molecular regulation of this defining β cell phenotype is unknown. Here, we show that maturation of SC-β cells is regulated by the transcription factor SIX2. Knockdown (KD) or knockout (KO) of SIX2 in SC-β cells drastically limits glucose-stimulated insulin secretion in both static and dynamic assays, along with the upstream processes of cytoplasmic calcium flux and mitochondrial respiration. Furthermore, SIX2 regulates the expression of genes associated with these key β cell processes, and its expression is restricted to endocrine cells. Our results demonstrate that expression of SIX2 influences the generation of human SC-β cells in vitro. |
format | Online Article Text |
id | pubmed-7304247 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
record_format | MEDLINE/PubMed |
spelling | pubmed-73042472020-06-19 SIX2 Regulates Human β Cell Differentiation from Stem Cells and Functional Maturation In Vitro Velazco-Cruz, Leonardo Goedegebuure, Madeleine M. Maxwell, Kristina G. Augsornworawat, Punn Hogrebe, Nathaniel J. Millman, Jeffrey R. Cell Rep Article Generation of insulin-secreting β cells in vitro is a promising approach for diabetes cell therapy. Human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) are differentiated to β cells (SC-β cells) and mature to undergo glucose-stimulated insulin secretion, but molecular regulation of this defining β cell phenotype is unknown. Here, we show that maturation of SC-β cells is regulated by the transcription factor SIX2. Knockdown (KD) or knockout (KO) of SIX2 in SC-β cells drastically limits glucose-stimulated insulin secretion in both static and dynamic assays, along with the upstream processes of cytoplasmic calcium flux and mitochondrial respiration. Furthermore, SIX2 regulates the expression of genes associated with these key β cell processes, and its expression is restricted to endocrine cells. Our results demonstrate that expression of SIX2 influences the generation of human SC-β cells in vitro. 2020-05-26 /pmc/articles/PMC7304247/ /pubmed/32460030 http://dx.doi.org/10.1016/j.celrep.2020.107687 Text en This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Velazco-Cruz, Leonardo Goedegebuure, Madeleine M. Maxwell, Kristina G. Augsornworawat, Punn Hogrebe, Nathaniel J. Millman, Jeffrey R. SIX2 Regulates Human β Cell Differentiation from Stem Cells and Functional Maturation In Vitro |
title | SIX2 Regulates Human β Cell Differentiation from Stem Cells and Functional Maturation In Vitro |
title_full | SIX2 Regulates Human β Cell Differentiation from Stem Cells and Functional Maturation In Vitro |
title_fullStr | SIX2 Regulates Human β Cell Differentiation from Stem Cells and Functional Maturation In Vitro |
title_full_unstemmed | SIX2 Regulates Human β Cell Differentiation from Stem Cells and Functional Maturation In Vitro |
title_short | SIX2 Regulates Human β Cell Differentiation from Stem Cells and Functional Maturation In Vitro |
title_sort | six2 regulates human β cell differentiation from stem cells and functional maturation in vitro |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7304247/ https://www.ncbi.nlm.nih.gov/pubmed/32460030 http://dx.doi.org/10.1016/j.celrep.2020.107687 |
work_keys_str_mv | AT velazcocruzleonardo six2regulateshumanbcelldifferentiationfromstemcellsandfunctionalmaturationinvitro AT goedegebuuremadeleinem six2regulateshumanbcelldifferentiationfromstemcellsandfunctionalmaturationinvitro AT maxwellkristinag six2regulateshumanbcelldifferentiationfromstemcellsandfunctionalmaturationinvitro AT augsornworawatpunn six2regulateshumanbcelldifferentiationfromstemcellsandfunctionalmaturationinvitro AT hogrebenathanielj six2regulateshumanbcelldifferentiationfromstemcellsandfunctionalmaturationinvitro AT millmanjeffreyr six2regulateshumanbcelldifferentiationfromstemcellsandfunctionalmaturationinvitro |